GRASP/Ada

Graphical Representations of Algorithms, Structures, and Processes for Ada

The Development of a
Program Analysis Environment for Ada

Reverse Engineering Tools For Ada
Task 2, Phase 3 Six-Month Report
Contract Number NASA-NCC8-14

Department of Computer Science and Engineering
Auburn University, AL 36849-5347

Contact: James H. Cross II, Ph.D.
Principal Investigator
(205) 844-4330

February 1991

ACKNOWLEDGEMENTS

We appreciate the assistance provided by NASA personnel, especially Mr.
Keith Shackelford whose guidance has been of great value. Portions of this report
were contributed by each of the members of the project team. The following is an
alphabetical listing of the project team members.

Faculty Investigator:

Dr. James H. Cross I1, Principal Investigator

Graduate Research Assistants:

Richard A. Davis
Charles H. May
Kelly 1. Morrison
Timothy A. Plunkett
Narayana S. Rekapalli
Darren Tola

The following trademarks are referenced in the text of this report.
Ada is a trademark of the United States Government, Ada Joint Program Office.

Software through Pictures (StP), Ada Development Environment (ADE), and
IDE are trademarks of Interactive Development Environments.

PostScript is a trademark of Adobe Systems, Inc.
VAX and VMS are trademarks of Digital Equipment Corporation.
VERDIX and VADS are trademarks of Verdix Corporation.

UNIX is a trademark of AT&T.

TABLE OF CONTENTS

1.0 Introduction and Executive SUmmaryc.ocoocooor0 1
1.1 Phase 1 - The Control Structure Diagram For Ada-- 2
1.2 Phase 2 - The GRASP/Ada Prototype and User Interface 4
1.3 Phase 3 - Integration, Evaluation and Releaseccoooocnn 4
2.0 The System Model oooiveemer e 6
21 ~ GRASP/Ada System Data Flowcvvenvermrres 6
22 GRASP/Ada System Block Diagramconoerrorrses 6
30 Control Structure Diagram Generatorcocooooo 11
31 Generating the CSD .. oo 11
3.2 Displaying the CSD - Screen and PHNIET . o oo e oo e 12
3.3 Navigating Through Large CSDs - Alternativesc..v oo 14
3.4 Printing An Entire Set of CSDs ... 14
3'5 Incremental Changes tothe CSD ... v 15
3.6 Internal Representation of the CSD - AIErnatives . .« oo v ov e e e e 15
37 Additional CSD CORSIUCES .« . vvvvsvmes e e 16
4.0 Object Oriented Design Diagram Generator:-: 18
41 ODgen Symbol Set vc v 18
4.2 GRASP/Ada ODgen Processing ANEINAtVES . o v v e oo 22
4.3 Displaying the OD - Screen and PHNTET . o oo oo oe oo 26
4.4 Incremental Changestothe OD covvevevmme e 29
4.5 Internal Representation of the OD - AMErnatives . .« o v o v v 30
4.6 Navigation Through Large ODs - ALernatives« covvom e eees 32
4.7 Exploding/Imploding the OD . et 34
4.8 Generating a Set of ODS . ..o 34
4.9 Printing An Entire Set of ODs e 34
4.10 Relating the CSD and OD - AIEINAHVES . o o oo v e vemm e 35
411 Index and Table of Contents Relating the CSDsand ODs 36
50 USer INEIACE .. .o ovvvvnveaee e ne et 37
5.1 Systemn WINAOWo oevevoneee s 38
52 Source Code WindOW oowvnvnnnem 38
53 Control Structure Diagram Windowcoeeeerens 41
6.0 The GRASP Librarycooveenomreemrreres 46
7.0 Future REQUITEMENES« ooonvvaene e 48
7.1 Phase 1 - Generators and Editors for Visualizationsc...-.-- 48
79 Phase 2 - Evaluation and EXtensionooon oo 50
73 Phase 3 - Evaluation and Integration with Commercial Systems 51
BIBLIOGRAPHY ..o oeetvino e 53

i

APPENDICES .« « ot o vttt et aeae e a i
A. "Reverse Engineering and Design Recovery: A Taxonomy"

by E. Chikofsky and J. Crosscooinvni e
B. "Control Structure Diagrams For Ada”

by J. Cross, S. Sheppard and H.Carlisle s
C. Extended EXamples oovvnon i

iit

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Figure 9.

LIST OF FIGURES

GRASP/AdE OVEIVIEW . oo vv v v ooe e e 3
GRASP/Ada Context Level Data Flow Diagram 7
GRASP/Ada System Level Data Flow Diagramcceoen s 8
GRASP/Ada System Block Diagramoovveveeeree s 9
The OOSD Notation Symbol Seto 19
GRASP/Ada System Window ovnvvmr 39
GRASP/Ada Source Code Windowo 40
GRASP/Ada CSD Windowcvuvnmnvnen e 42
GRASP/Ada File Selection Windowvvvocennnees 43

v

1.0 Introduction and Executive Summary

Computer professionals have long promoted the idea that graphical representations of
software can be extremely useful as comprehension aids when used to supplement textual
descriptions and specifications of software, especially for large complex systems. The general
goal of this research is the investigation, formulation and generation of graphical
representations of algorithms, SIructures, and processes for Ada (GRASP/Ada). The present
task, in which we describe and categorize various graphical representations that can be
extracted or generated from source code, is focused on reverse engineering.

Reverse engineering normally includes the processing of source code to extract higher
levels of abstraction for both data and processes. Our primary motivation for reverse
engineering is increased support for software reusability, verification, and software
maintenance, all of which should be greatly facilitated by automatically generating a set of
"formalized diagrams" to supplement the source code and other forms of existing
documentation. For example, Selby [SEL85] found that code reading was the most COst
effective method of detecting errors during the verification process when compared to
functional testing and structural testing. And Standish [STA85] reported that program
understanding may represent as much as 90% of the cost of maintenance. Hence, improved
comprehension efficiency resulting from the integration of graphical notations and source
code could have a significant impact on the overall cost of software production. The overall
goal of the GRASP/Ada project is to provide the foundation for a CASE (computer-aided
software engineering) environment in which reverse engineering and forward engineering

(development) are tightly coupled. In this environment, the user may specify the software

in a graphically-oriented language and then automatically generate the corresponding Ada
code [ADAS3]. Alternatively, the user may specify the software in Ada or Ada/PDL and
then automatically generate the graphical representations either dynamically as the code is
entered or as a form of post-processing. Appendix A contains a comprehensive taxonomy
of reverse engineering, including definitions of terms.

Figure 1 provides an overview to the three phases of the GRASP/Ada project. Ada
source code or PDL is depicted as the basic starting point for the GRASP/Ada toolset. Each
phase is briefly described below. Phases 1 and 2 of GRASP/Ada have been completed and
a new graphical notation, the Control Structure Diagram (CSD) for Ada and the supporting
software tool is now being prepared for evaluation [CRO88, CR0O89, CRO%0a-d]. In Phase
3. the focus is on a subset of Architectural Diagrams that can be generated automatically from
source code with the CSD included for completeness. These are described briefly in the

order that they might be generated in a typical reverse engineering scenario.

1.1 Phase 1 - The Control Structure Diagram For Ada

Phase 1 concentrated on a survey of graphical notations for software and the
development of a new algorithmic or PDL/code level diagram for Ada. Tentative graphical
control constructs for the Control Structure Diagram (CSD) were created and initially
prototyped in a VAX/VMS environment. This included the development of special
diagramming fonts for both the screen and printer and the development of parser and scanner
using UNIX based tools such as LEX and YACC. Appendix B provides a detailed
description of the CSD and the rationale for its development. The final report for Phase 1

[CRO89] contains a complete description of all accomplishments of Phase 1.

Y R A TRy

uone1dau] 2dA10101]

| ¢ aseyq

swelgdei(] [eInioNIYoIY

i,

RAVI LR NN

| 7 aseyy

(WI1SAS MOPUIAA X)

d0RJIa1U] 19S()

i

—= 1 1 9set
= swe.I3eI(] ! ld
w.\\,{ @@OU

/1dd

pua

adwexazooud

Sweadel(

(21N QUL

doo| pua
Rpus
s
EHE
g @ﬁuou
aay1 Zpuos ji
Dwis
doo| [puod ajyw
s
mdaq
apdwexa” [201d 3npadond

MITAIBAQ BPVY/ASYVUD

Figure 1. GRASP/Ada Overview

OF POOR QUALITY

ORIGINAL PAGE IS

12 Phase 2 - The GRASP/Ada Prototype and User Interface

During Phase 2, the prototype was extended and ported to a Sun/UNIX environment.
The development of a user interface based on the X Window System represented a major part
of the extension effort. Verdix Ada and the Verdix DIANA interface were acquired as
potential commercial tools upon which to base the GRASP/Ada prototype. Architectural
diagrams for Ada were surveyed and the OOSD notation [WAS89] was identified as having
the best potential for accurately representing many of the varied architectural features of an
Ada software system. Phase 2 also included the preliminary design and a separate prototype
for an architectural CSD. The best aspects of architectural CSD are expected to be integrated
into the prototype during Phase 3. The final report for Phase 2 [CRO90c] contains a

complete description of the accomplishments of Phase 2.

1.3 Phase 3 - Integration, Evaluation and Release

Phase 3 has two major thrusts: (1) completion and release of an operational
GRASP/Ada prototype which generates CSDs and (2) the analysis, design and development
of a preliminary prototype which generates object diagrams directly from Ada source code.
Completion of the GRASP/Ada CSD prototype includes the development of an intermediate
representation of the CSD to increase efficiency and provide for extensibility. A major
subtask of Phase 3 is preparing the prototype for release to the research community, business
and industry. To date, over 80 requests for information regarding GRASP/Ada have been
received as a result of publications generated from this research. Responding to these
requests are an important element of the ongoing evaluation and refinement of the

GRASP/Ada reverse engineering system.

The development of a preliminary prototype for generating architectural object
diagrams (ODgen) for Ada source/PDL is an effort to determine feasibility rather than deliver
an operational prototype as above. Research has indicated that the major obstacle for
automatic object diagram generation is the automatic layout of the diagrams in a human
readable and/or aesthetically pleasing format. A user extensible rule base, which automates
the diagram layout task, is currently being formulated. If a satisfactory solution to the layout
problem can be found, the development of the components to recover the information to be
included in the diagram, although a major effort, is expected to be fairly straightforward.
Interactive Development Environment’s Software through Pictures (IDE/StP), which supports
the OOSD notation in a forward engineering sense, has been acquired as a candidate for a
commercial CASE environment with which to integrate GRASP/Ada reverse engineering

system.

2.0 The System Model

The general system model for the GRASP/Ada prototype is described in this section.
The overall functionality of the system is briefly described from a data flow perspective and

then each of the GRASP/Ada components is presented in the form of a system block diagram.

2.1 GRASP/Ada System Data Flow

Figures 2 and 3 describe the major processes and overall flow of information within
the GRASP/Ada system. The primary input is Ada source code GRASP commands and the
primary outputs are control structure diagrams, object diagrams and library information. The

Ada source code is assumed to be syntactically correct.

2.2 GRASP/Ada System Block Diagram

Figure 4 depicts the major system components hierarchically to illustrate the layers
and component interfaces. The user interface (not shown in the system data flow diagram)
was built using the X Window System and provides general control and coordination among
the other components.

The control structure diagram generator, CSDgen, has its own parser/scanner built
using FLEX and BISON, successors of LEX and YACC. It also includes its own printer
utilities. As such, CSDgen is a self-sufficient component which can be used from the user
interface or the command line without the commercial components required by the object
diagram generation component. A CSD editor, CSDedit (not shown), is currently in the

planning stages. It will provide editing capabilities for directly modifying the CSD produced

ePY/dSVID

%0

sureidei(] 19900

sweidei(q 21nOMIG [01U0)D)

uoneuuojuy Areiqry

SPUBILIOD) MBI A WeIdeI(]

9pO)) 20IN0G BPY

138}

Figure 2. GRASP/Ada Context Level Data Flow Diagram

susduic] 12200

A

ao
adapol]

S

SpuUBIWO’) WA (JO

ERIIN

SIL]
ABIPIWIf (10

LIV PIENVATS)

$aLg
mipaunany ([SD

s
swipauLaL] (1S)

FRIIE|
ajerpaunav] (JO

::::E-C.—:_

U} pus |oquAS

uolEuUajup

nu(y pue joquily

UOIEULIO JU|
) pue joquiks

s9L.]
U:u:vbr—:u—:— CMU

SPUBLIWO.) MATA (ISD

MIAA
asd
250pOLf
v

221 s

SIUDWIWIOT)

uonBULOjUj
Kawiqry

opuly 23NVS ¥PY

sweidei(] 2JMO0AY ([0NUO))

——

Figure 3. GRASP/Ada System Level Data Flow Diagram

GRASP/Ada

User Interface (X)

CSDgen

Parser/Scanner . Parser/Scanner
BISONFLEX) | | CRASPID ‘ (BISON/FLEX)

DIANA Interface| |Commercial CASE

| (Verdix VADS) (IDE StP)
UNIX File System ‘
| |
source code graphical reps

Figure 4. GRASP/Ada System Block Diagram

by CSDgen. Without CSDedit, changes must be made to the source code and then the CSD
must be regenerated.

The object diagram generation component, ODgen, is in the analysis phase. The
feasibility of automatic diagram layout is currently under investigation. Beyond automatic
diagram layout, several design alternatives are being investigated. The major alternatives
include the decision of whether to attempt to integrate GRASP/Ada directly with commercial
components, namely (1) the Verdix Ada development system (VADS) and DIANA interface
for extraction of diagram information and (2) IDE’s Software through Pictures, Ada
Development Environment (IDE/StP/ADE) for the display of the object diagrams. Each of
these components are indicated in Figure 4.

The GRASP/Ada library component, GRASPIlib, provides for coordination of all
generated items with their associated source code. This facilitates navigation among the
diagrams and the production of sets of diagrams. Both CSDgen and ODgen produce library
entries as Ada source is processed.

In the following sections, the general functional requirements and prototype
implementation (in progress) are described for each of the major GRASP/Ada components:

the control structure diagram generator, the object diagram generator, and the user interface.

10

3.0 Control Structure Diagram Generator

The GRASP/Ada control structure diagram generator (CSDgen) is described in this
section. The detailed specifications and current issues are described below. Examples of the
CSD are presented in conjunction with the User Interface in Section 5.0 and in Appendix C.
The rationale for the development of the CSD, which has been detailed in previous reports

[CRO89, CRO90c], is summarized in Appendix B.

3.1 Generating the CSD

The primary function of CSDgen is to produce a CSD for a corresponding Ada source
file. CSDgen has its own parser/scanner constructed using LEX/YACC based software tools
available with UNIX. Although a complete parse is done during CSD generation, CSDgen
assumes the Ada source code has been previously compiled and thus is syntactically correct.
Currently, little error recovery is attempted when a syntax error is encountered. The diagram
is simply generated down to the point of the error. The Version 1 and Version 2 CSDgen
prototypes built the diagram directly during the parse by inserting CSD graphics characters
into a file along with text. To increase efficiency and improve extensibility, the Version 3
CSDgen prototype will use an intermediate representation which is described below.

Since GRASP/Ada is expected to be used to process and analyze large existing Ada
software systems consisting of perhaps hundreds of files, an option to generate all the CSDs
at once is required. Generating a set of CSDs can be facilitated by entering *.a or some
other wildcard with a conventional source file extension, for the file name. A CSD

generation summary window should display the progress of the generation by lisung each

11

file as it is being processed and any resulting error messages. The summary should conclude
with number of files processed and the number of errors encountered. The default for each
CSD file name is the source file name with .csd appended. As the CSDs are generated, the
GRASP library is updated. Generating a set of CSDs can be considered a user interface

requirement rather than strictly a CSD generator requirement.

3.2 Displaying the CSD - Screen and Printer

Basic display capabilities to the screen and printer were implemented during Phase
2. Screen display is facilitated by sending the CSD file to a CSD window opened under an
X Window manager. Printing is accomplished by converting the CSD file to a PostScript file
and then sending it to a printer. Moving to an intermediate representation during Phase 3 will
necessitate the development of a new set of display routines which will be X Window System
based. However, these new routines will increase the flexibility and capability of CSDgen,
thus making it more immediately useful to the research community. Layout/spacing,
collapsing the CSD, and screen and printer fonts are considered below.

Layout/Spacing. The general layout of the CSD is highly structured by design.
However, the user should have control over such attributes as horizontal and vertical spacing
and the optional use of some diagramming symbols. In the Version 2 CSDgen prototype,
horizontal and vertical spacing options were a part of the CSD file generation. In order to
change these options (e.g., from single to double spacing), the CSD file had to be
regenerated. In the Version 3 prototype, these options will be handled by the new display
routines and, as such, can be modified dynamically without regenerating the CSD file.

Vertical spacing options include single, double, and triple spacing (default is single).
Margins have been roughly controlled by the character line length selected, either 80 or 132

12

characters per line (default is 80). Indentation of the CSD constructs has been a constant
three blank characters. Support for variable margins and indentation are being investigated
in conjunction with the new display routines. In addition, several display options involving
CSD graphical constructs are under consideration. For example, the boxes drawn around
procedure and task entry calls may be optionally suppressed to make the diagram more
compact.

Collapsing the CSD. The CSD window should provide the user with the capability
to collapse the CSD based on all control constructs as well as complete diagram entities (e.g.,
procedures, functions, tasks and packages). This capability directly combines the ideas of
chunking with control flow which are major aids to comprehension of software. An
architectural CSD (ArchCSD) [DAV90] can be facilitated by collapsing the CSD based on
procedure, function, and task entry calls, and the control constructs that directly affect these
calls. The initial ArchCSD prototype was completely separate from CSDgen and required
complete regeneration of the ArchCSD file for each option. In the Version 3 prototype, the
ArchCSD will be generated by the display routines from the single intermediate
representation of the CSD.

CSD Screen Fonts. The CSD screen font is a bitmap 14 point Courier to which the
CSD graphic characters were added. The font was defined as a bitmap distribution font
(BDF) then converted to SNF format required by the X Window System. Additional screen
fonts may be developed as required.

CSD Printer Fonts. CSD Printer fonts were initially developed for the HP LaserJet
series. These were then implemented as PostScript type 3 fonts and all subsequent font
development has been directed towards the PostScript font. The PostScript font provides the
most flexibility since its size is user selectable from 1 to 300 points.

13

Color. Although color options were briefly investigated for both the screen and

printer, it was decided that they will not be pursued in the Version 3 prototype.

3.3 Navigating Through Large CSDs - Alternatives

Index (or Table of Contents). An index, similar to that presented in the Xman
application provided with the X Window System for viewing manual pages, is used to
navigate among a system of CSDs. The user clicks on the index entry and the corresponding
CSD is displayed. The index entries would be created as CSDs are generated and stored in
the GRASP/Ada library. Entries in the library are to include procedures, functions, tasks,
task entries, and packages. See Section 6 below for details.

Direct Navigation Via CSD. The user is allowed to click on procedure, function, and
task entry calls in the CSD directly and a separate CSD window is opened containing the
selected CSD or fragment thereof. Two potential problems have been identified with this
approach. Using the mouse for selection may conflict with established editing functions
supported by the mouse. In addition, it may be difficult to relate the characters or CSD
graphical construct with subprogram and entry names. The availability of middle mouse

button for this purpose is being investigated.

3.4 Printing An Entire Set of CSDs

Printing an entire set of CSDs in an organized and efficient manner is an important
capability when considering the typically large size of Ada software systems. A book format
is under consideration which would include a table of contents and/or index. In the event
GRASP/Ada is integrated with IDE/StP/ADE, the StP Document Preparation System could
possibly be utilized for this function.

14

3.5 Incremental Changes to the CSD

In the present prototype, there is no capability for editing or incrementally modifying
the CSD. The source code is modified using a text editor and then the CSD is regenerated.
While this has been sufficient for early prototyping, especially for small programs, editing
capabilities are desirable in an operational setting. An editor has been proposed and is briefly

discussed in Section 7.0 Future Requirements.

3.6 Internal Representation of the CSD - Alternatives

Several alternatives are under consideration for the internal representation of the CSD
in the Version 3 prototype. Each has its own merits with respect to processing and storage
efficiency and is briefly described below.

Single ASCIH File with CSD Characters and Text Combined. This is the most
direct approach and is currently used in the version 2 prototype. The primary advantage of
this approach is that combining the CSD characters with text in a single file eliminates the
need for elaborate transformation and thus enables the rapid implementation of prototypes as
was the case in the previous phases of this project. The major disadvantages of this approach
are that it does not lend itself to incremental changes during editing and the CSD characters
have to be stripped out if the user wants to send the file to a compiler.

Separate ASCII Files for CSD Characters and Text. In this approach, the file
containing the CSD characters along with placement information would be "merged” with the
prettyprinted source file. The primary advantage of the this approach is that the CSD
characters would not have to be stripped out if the user wants to send the file to a compiler.
The major disadvantage of this approach is that coordinating the two files would add
complexity to generation and editing routines with little or no benefit. As a result, this

15

approach would be more difficult to implement than the single file approach and not provide
the advantages of the next alternative.

Single ASCII File Without Hard-coded CSD Characters. This approach represents
a compromise between the previous two. While it uses a single file, only "begin construct”
and "end construct” codes are actually required for each CSD graphical construct in the CSD
file rather than all CSD graphics characters that compose the diagram. In particular, no
continuation characters would be included in the file. These would be generated by the
screen display and print routines as required. The advantages of this approach would be most
beneficial in an editing mode since the diagram could grow and shrink automatically as
additional text/source code is inserted into the diagram. The extent of required modifications
to text edit windows must be considered with this alternative.

Direct Generation From DIANA Net. If tight coupling and integration with a
commercial Ada development system such as Verdix VADS is desired, then direct generation
of the CSD from the DIANA net produced as a result of compilation could be performed.
This would require a layer of software which traverses the DIANA net and calls the
appropriate CSD primitives as control nodes are encountered. This approach would
apparently eliminate the possibility of directly editing the CSD since the DIANA interface

does not support modifying the net, only reading it.

3.7 Additional CSD Constructs
Task Entry and Task Exit Symbols, Label and GOTO Label Symbols. These are
needed to differentiate among a task exit, function return, and goto statement, and between

a task entry and label symbol.

16

Generic Task and Package. Dashed task and package symbols should be used to
distinguish between generic and non-generic tasks and between generic and non-generic
packages.

Function Call. A CSD symbol similar to that used for procedure calls should be used
for function calls for consistency.

Task Entry Call. Currently the task entry symbol is the same as the task definition
symbol (open-ended parallelogram). However, a call to a task entry block is similar
semnantically to a procedure call. Hence, it would be more appropriate to use the procedure

symbol for the task entry call in the calling subprogram and the task entry itself in the task.

17

4.0 Object Oriented Design Diagram Generator

The object-oriented design diagram generator, Or simply object diagram generator
(ODgen), produces object diagrams (ODs) for a corresponding set of Ada source files. The
detailed specifications and current issues are described below. A preliminary prototype is

expected to be constructed to determine several of the feasibility issues.

4.1 ODgen Symbol Set

The OOSD notation [WAS89] has been selected as a basis for the Object Diagram
generator (ODgen). The complete set, which was designed with the intention of using it in
forward engineering, is illustrated in Figure 5. In this section, the feasibility of deriving each
of these symbols during a reverse engineering effort is considered, and the modifications or
supplements needed to render them suitable for the ODgen project are discussed.

Lexical Inclusion of Data Modules. The inclusion of a data module into another
module may be determined from a parse of the Ada source code. If a data module 1s
considered to be a component which contains no executable statements other than
initializations, then there should be no difficulty in recognizing these modules, and their
inclusion in an OD should cause no problems.

Iterative Calls to Library Modules. Again, this information may be extracted from
a parse of the Ada source code. There should be no difficulty in producing an OD
representation for iterative calls to library modules; however, the composition of this situation

with others, such as conditional module calls, may require further analysis.

18

Module ’ Moduie |

r \ Cond:tional
|

|
Lexica \ lterative
Call

/ Inclusion Call

Library gl |
Module o
Output Control Exception Input and Output
Parameter Parameter Data Parameters
~ e v
i TV
oft Operation ov2o '
/ Names \ ? gpl
T \
e Genenc
Exception | Generic ! Paramcter
Name l_ IECk_a_gc_l
Asynchronous
Activation
Guard

in
! ~ out /

X - - — %
. o

/’* !

Call] Genenc ¢
L 'f_asli_ / Sequencing
Package Module
Name
=>val
gp=>v2 v Visibility

;> {nstantiation

Generic
Package

e — e 4

Figure 5. The OOSD Notation Symbol Set
(from Introduction to StP OOSD Graphical Editor, IDE, 1989, p. 59)

ORIGINAL PAGE IS

19
OF POOR QUALITY

Conditional Module Calls. A conditional call of one module from another can be
recognized during parsing, but the generation of an OD representation may prove difficult
should the conditional call be composed with another type of call. For example, a program
loop may conditionally call another module within the loop’s body. How should this be
represented in the OD? Certainly the call is a conditional one and may be represented using
the conditional module call construct. However, the module is being called repetitively
within a loop, so it may just as well be represented using the iterative call construct. Another
possibility is to represent the call using a composition of the two representations, indicating
that the module is called both iteratively and conditionally. The problem is that this raises
ambiguity in that the diagram does not indicate whether the call was made conditionally in
the body of a loop, or whether it was made iteratively as the consequence of some condition
being true. This ambiguity must be resolved if the iterative and module call representations
are to be used properly in the OD.

Package Specifications. .A package may be recognized from a parse of an Ada
program, and the operations contained within the package may be recognized just as easily.
The direction of the parameters may also be determined syntactically through the presence
of the in, out, and in out parameter designators. However, the distinction of parameters as
either control or data parameters may not be recognized as easily. In fact, it is possible for
parameters to be used as both control and data parameters, so the automated classification of
an operations's parameters as control or data may not be feasible. Finally, the detection of
exceptions may be determined easily through syntactic analysis.

Generic Packages. The specification of a generic package may be recognized easily
from a parse of an Ada program, and the generic parameters which must be specified in an
instantiation of the package, the operations provided by the package, the parameters to the

20

operations and their direction may also be recognized syntactically. However, the generic
package suffers from the same problem as the package in the area of detection of control and
data parameters. Again, the automated classification of parameters as either control or data
parameters may not be feasible.

Tasks. The declaration of a task may be recognized syntactically in a parse of an Ada
program. Much of the desired information needed in the creation of an OD representation
of a task may also be obtained from syntactic analysis, such as the entries provided by the
task, the parameters and their associated directions for each of the task entries, and any
guards placed on the task entries. However, there are two items in the OOSD depiction-of
a task that may not be obtainable in an automated fashion during reverse engineering. The
first of these is the omnipresent problem of distinguishing between control and data
parameters which has already been discussed in previous paragraphs. The second is the
placement of sequencing numbers on the task entries. Only in the most trivial cases may
these numbers be properly derived. In more complex cases, the sequencing numbers would
be meaningless or even misleading, and the OD would probably be better off by omitting
these numbers.

Generic Tasks. The depiction of a generic task in the OD suffers from many of the
same problems as the depiction of a task, and the reader is referred to the previous paragraphs
for a discussion of these problems. Other than that, the detection and representation of a
generic task should provide no further problems.

Instantiation of Generic Packages. The instantiation of a generic package in an Ada
program may easily be determined syntactically. The generation of a proper OO0SD symbol
for generic package instantiation will require actual parameters to be matched with formal
parameters. Otherwise, it should pose no difficulty.

21

Visibility. The depiction of the semantic visibility of a package to a module in an
Ada program may be determined syntactically, but the representation may prove to be
misleading. There are two "varieties” of visibility that must be represented: packages
lexically included in the declarative section of the current compilation unit and packages
included via the with clause, which are separate compilation units. For example, a package
in an Ada program may only be visible to a small section of a module (for example, a block
in a module containing a loop may declare the package in the declaration area and call a
function in the package iteratively during the loop. The package would therefore be visible
throughout the scope of the block, but would not be visible in the statements preceding aﬁd
following the block. Therefore, the depiction of the package as being visible to the module
could be misleading to the user unfamiliar with the underlying code. Although generating
the representation is not difficult, the sensibility of utilizing the representation must be
considered. When visibility is determined by the with clause, a separate icon is, of course,
necessary and appropriate.

Symbol Interconnections and Diagram Layout. The actual automatic layout of the
generated object diagram with respect to symbols and interconnections is the most formidable
problem that must be solved. Whereas the CSD has a flexible but well-defined physical
layout, the OD layout is not well-defined. In fact, the CASE tools that support the OOSD
notation require the users to "manually” arrange the symbols. Determining the feasibility of
an algorithmic and/or heuristic solution which yields a reasonably comprehensible diagram

layout, and then demonstrating it, is a key component of Phase 3.

22

4.2 GRASP/Ada ODgen Processing Alternatives

In the development of the ODgen design specification, three distinct development
methods were considered. The major difference among these methods is linked to the degree
of involvement of other commercially available tools and the ability of the user to specify
these tools. The first method considered was to create ODgen as a stand-alone system. A
second alternative was to use GRASP/Ada as a driver for a set of subprogram invocations
which would use VADS, ODgen, and StP/ADE in sequence to produce the architectural
diagrams. Finally, the third alternative considered was to use GRASP/Ada as a shell from
which the user could invoke each of the three tools at his convenience. In this section, these
three methods are examined in more detail, and the advantages and disadvantages associated
with each method are outlined.

ODgen Is Independent of Commercial Tools. This method would involve the
development of a stand-alone architectural diagram generator. The generator would not be
dependent on commercial tools such as VADS and StP/ADE. Instead, the parser/scanner
developed in Phases I and II of the GRASP/Ada research project would be extended to
extract the information needed for the representation of architectural diagrams. A method for
specifying or identifying the complete set of files comprising the Ada system would have to
be developed (this may require some involvement from the user). The major advantage of
this method is that the tool would not be subject to the whims of the manufacturers of
commercial tools (i.e., the tool would not be rendered useless if VADS were to become
unsupported, if the DIANA representation were subjected to large-scale change, if the
StP/ADE file formats and representation methods were to be changed, etc.). On the other
hand, this method would involve substantially longer development time, as a tool for
identifying the dependencies among a set of Ada source files would have to be developed.

23

In addition, a tool for viewing and printing the architectural diagrams would need to be
developed. Because a substantial amount of effort has already been spent in the development
of the GRASP/Ada X11R4 interface, extending this interface to display the architectural
diagrams could benefit from the groundwork already laid in Phases I and II. The major goals
which would need to be accomplished are the development of X11R4 widgets for the
representation of each of the OOSD symbols, and the development of layout heuristics and
modified layout widgets suitable for displaying the OOSD symbols.

ODgen Invokes VADS and StP/ADE. In this method, the ODgen component of
GRASP/Ada would first invoke VADS to generate a DIANA net for the specified set of Ada
source files. ODgen would then traverse this net to obtain the required information and
generate an internal representation for the architectural diagrams. fhis information would
then be shaped into a format suitable for StP/ADE and saved. Finally, StP/ADE would be
invoked to view the architectural diagram. All of this would be transparent to the user: after
specifying the Ada source files and a number of ODgen options, GRASP/Ada would invoke
the tools in sequence and bring up StP/ADE as a subprocess displaying the generated
diagrams. The major advantage in this approach is that it would utilize already-existing tools
to speed the development effort. Instead of writing yet another Ada parser, intermediate
representation generator and OOSD diagram displayer, the research effort could concentrate
on the task of obtaining architectural details and composing meaningful architectural diagrams
from them. However, relying on commercial tools could be dangerous as subtle changes in
the formats of either the VADS representation or the StP/ADE representation could require
major, sweeping changes in the ODgen system. In addition, the use of commercial tools
could greatly limit the number of potential users for the ODgen system. Instead of only
needing the ODgen system, the user would also need the VADS Ada compiler and the

24

StP/ADE software development system - two costly components. For many university
research installations, the costs of these systems would be prohibitive and would virtually
eliminate the potential use of ODgen.

GRASP Runs Independently of VADS and StP/ADE. The user invokes VADS to
create DIANA nets, invokes GRASP to generate CSDs and ODs, and invokes StP/ADE to
view the ODs. In this scenario, the GRASP/Ada interface would be partially customizable
by the user. Instead of relying on a specific Ada intermediate representation generator and
OOSD diagram displayer, the user would be able to select from a limited number of
commercial tools. To accomplish this, a minimal ODgen interface for each tool would be
identified and a suitable data representation would be specified. ODgen would then be
designed to transform the input Ada source data into an architectural diagram representation
in the output format. Then, customizing GRASP/Ada for new intermediate Ada
representations and OOSD diagram formats would consist of simply writing a filter
transforming the data from one representation to another. For example, customizing
GRASP/Ada to work with the VADS DIANA representation would require a filter to be
written to traverse the DIANA nets and store the needed architectural information into a file
in ODgen’s input format. Similarly, customizing GRASP/Ada to work with the StP/ADE tool
would require a filter to be written translating the ODgen output format into StP/ADE’s input
format. This method would allow GRASP/Ada to be fairly portable without depending on
strict reliance on commercially available tools. On the other hand, this method would require
an extensive and easily translatable interface format to be developed for both ODgen'’s input
and output formats. Finally, the amount of effort required for the writing of filters for new
representations could be potentially quite large, depending on the format and accessibility of
the new representations.

25

4.3 Displaying the OD - Screen and Printer

Generating visual displays of the object diagrams will require display methods to be
generated for the screen and printer. Since the GRASP/Ada interface for Phases I and II was
developed using the X Window System (a portable graphical environment gaining widespread
acceptance) and numerous utilities have been developed in the creation of that interface, the
development of a display mechanism for the object diagrams in X11R4 would be a logical
extension to the previous work. In addition, the PostScript page description language was
used in Phases I and I for the hardcopy output of the CSD diagrams. Because PostScript
is a nearly universal output description language for laser printers, the development of
PostScript utilities for printing GRASP/Ada object diagrams would ensure the portability of
GRASP/Ada. In this section, some of the issues and considerations involved in the
generation of visual displays for the object diagrams for the screen and printer are discussed.

Screen representations. In the X11R4 system, objects on a screen are often
represented using widgets (a user interface component embodying a single concept: e.g.,
buttons, labels, scrollbars, etc.). The development of the interface for Phases I and II of the
GRASP/Ada research project was implemented using the X11R4 Athena widgets, a general
purpose widget set shipped with the X11R4 system. Numerous utilities were developed by
the GRASP/Ada implementation team to simplify the use of these widgets to providing
facilities for browsing files, generating alert boxes and dialogues, creating text editor
windows, and specifying menus. These utilities would be invaluable in the development of
the ODgen interface, but additional utilities will be needed. In particular, there are no
suitable widgets in the Athena set for displaying the various OOSD symbols. A reasonable
approach to implementing a display mechanism for the ODgen diagrams would involve the
creation of a set of widgets, one for each of the symbols in the OOSD set. These widgets

26

could be subclassed from existing widgets in the X11R4 Athena set, minimizing the amount
of effort required to create them (although this would cause them to need revision with
subsequent releases of X11). And once written, these widgets could be used in other CASE
programs written for X11R4. Next, constraint and layout widgets would need to be designed
to facilitate the layout of these OOSD symbols. Again, a suitable widget could be created
by subclassing an appropriate Athena widget, in this case, probably the Form widget. Such
a widget would be responsible for laying out an architectural diagram and redrawing it after
modifications, thus justifying the need for embedded logic to be written for the automatic
layout of the ODgen diagrams.

Printer Representations. In Phases I and II of the GRASP/Ada research project,
three different types of output devices were utilized. The first was the LNO3 printer, a printer
manufactured by DEC with the capability of printing sixel graphics. Printing the CSD on the
LNO3 printer was accomplished by generating sixel representations for each of the CSD
characters and then printing each CSD character as a small graphic image. The text of the
Ada source program was printed normally using the LLNO3 resident fonts. This method had
several major disadvantages: it was not portable (sixel graphics are a proprietary format of
DEC), it was slow (printing each CSD character as a graphic bitmap was a time-consuming
process), it was crude (the sixel graphics format did not allow for a high degree of resolution
and the generated CSD characters suffered from jagged outlines), and it wasted file space (the
space required to store the sixel representation of a single CSD character was equivalent to
the space needed to store over 200 text characters). The second output device utilized was
the HP LaserJet II printer, an extremely popular laser printer. Using the LaserJet II enabled
the GRASP/Ada program to utilize a specially prepared CSD font that could be downloaded
to the printer. This method allowed the CSD to enjoy greatly improved resolution over the

27

LLNO3 characters, a much smaller file representation (since each CSD character could now be
represented as a single extended ASCII character rather than a large bitmap image), and faster
printing speeds. However, this method was still tied to a single commercial printer, the HP
LaserJet II. The third method aliowed the GRASP/Ada program to generate CSDs that could
be printed on a wide variety of printers by generating CSDs using the PostScript page
description language. PostScript representations for each of the CSD characters were
generated using a series of PostScript graphic primitives to describe how to draw each
character. Once designed, these characters were merged with a PostScript program that uses
the Adobe Courier font to produce a modified Courier font containing the CSD characters.
The CSD font can be installed on any PostScript printer by downloading this PostScript
program. Thereafter, CSDs can be printed by sending them to the printer and specifying this
specially modified Courier font. The advantages to this method are many: the CSD can be
printed on any printer (laser, inkjet, dot-matrix, etc.) that supports PostScript; the CSD can
be printed at the highest resolution the printer is capable of producing, which generally
produces results of outstanding high quality on most laser printers; and the CSD font can be
scaled to any size, allowing the CSD to be printed at any size the user wishes (unlike the
previous methods, which allowed the user to have only one font size). For Phase III of the
GRASP/Ada research project, a library of PostScript routines for printing each of the OOSD
symbols must be created. The ODgen program can then invoke these routines to create a
sequence of descriptions for printing the OO0SD diagram to any PostScript printer. Care must
be exercised in the creation of these routines to ensure that they match the appearance of the
X11R4 widgets also corresponding to these OOSD symbols. Like the modified X11R4
widgets for the OOSD symbols, these PostScript routines should also be portable to any other
CASE tool for the X11R4 system.

28

4.4 Incremental Changes to the OD

The ultimate goal of the ODgen phase of the GRASP/Ada research project is to allow
the user to reverse engineer a set of Ada source files into an architectural diagram. For a
large system, this may take some time. It would be desirable to have the user do the reverse
engineering once and then have ODgen incrementally change the OD as the user makes
changes to the source code. However, this is an extremely complex issue, and some of the
problems involved in doing this are addressed in this section.

The first problem involved in the incremental updating of the OD is that if the
DIANA notation is used to obtain the syntactic and semantic information from the Ada
source files for the generation of the OD, then we are immediately stymied. In its current
states, DIANA does not support incremental updates. If a portion of a file is changed, then
the entire file must be recompiled to update the DIANA net. Thus, any implementation of
ODgen which relies on a DIANA net for its information could not support incremental
diagram updating. A parser specifically modified for incremental updates could prove useful
in generating the diagrams, but such parsers are extremely complex to design and are often
excruciatingly slow in practice. Teitelbaum and others [TEI81] have outlined some of the
problems involved in incremental parsing in their work on the development of syntax-directed
editors.

The second problem involved in the incremental updating of the OD lies in the
unrestrained freedom of editing by the user. The proper generation of an OD relies on the
existence of a relatively complete Ada compilation unit, where "relatively complete” is
defined as a main (or "driver ") program along with at least the specifications of the
packages, tasks, and modules upon which it depends. The existence of a relatively complete
program is not normally a problem in reverse engineering, where the user has a system and

29

is just trying to decipher its function and meaning. However, the user could initiate what,
to him, appear to be very minor changes that could lead to many changes throughout the ODs
and CSDs. As an example, imagine that the user renames a small package. To him, this
may be a minor modification, but it would create havoc for the ODgen system. The system
would no longer be relatively complete, as it would now contain what would appear to be a
new and unreferenced package along with a large number of package inclusions that may no
longer be satisfied. This and related problems must be addressed in any attempt at providing

incremental updates to the ODs and CSDs.

4.5 Internal Representation of the OD - Alternatives

Although the DIANA intermediate representation for Ada may be used to gather
information for the creation of the OD, and the StP/ADE format may be used as one possible
output representation for the OD, a more extensive and comprehensive internal representation
tailored for the needs of the OD generator is desired. Several alternatives are presently under
consideration for this internal representation of the OD. These alternatives include (1) storing
the OD as a single ASCII file, (2) storing the OD as a number of files tailored to the internal
data structures utilized by ODgen, and (3) completely bypassing the internal representation
to directly generate the OD from a DIANA net. Each of these approaches has its own merits
with respect to processing and storage efficiency, and these qualities are in this section.

Single ASCII File. The most direct approach is to utilize the StP file format. This
would present the option of viewing the OD via the StP/ADE system. However, although
the StP file format is "open architecture,” it is a proprietary format and is, therefore, subject
to change. Because the function of the ODgen system will be dependent to a high degree on
the organization of the data upon which it operates, a stable data format is desired.

30

Therefore, an original data format might prove to be more useful over time as it would reduce
the problems of compatibility with commercial formats (filters could be written to translate
from the ODgen format to other formats). In addition, commercial formats such as the StP
format might lack provision for all of the information which might be needed for the OD.
This is particularly true for the case in which the user may wish to link CSDs generated using
the GRASP/Ada CSD generator to objects in the OD. A comprehensive internal
representation consisting of segments storing information for each of the OOSD symbols may
prove to be necessary to fulfill all of the needs of Phase III of the GRASP/Ada research
project.

Multiple ASCII Files. Because a typical Ada program will involve a number of
source files, an alternative to storing the data relating to a system in a single file is to store
the data in a number of files, each linked to one or a number of source files. Such a system
would decompose the intermediate representation into a number of smaller units. With an
appropriate indexing scheme, this could bring about increased performance in the ODgen
program as the system would not have to peruse unnecessary information to get to the data
it needs. This scheme might also prove helpful in producing incremental changes to the OD.
The major drawbacks to this method are the greatly increased number of files generated and
the overhead involved in the indexing scheme.

Direct Generation From DIANA Net. If tight coupling and integration with a
commercial Ada development system such as Verdix VADS is desired, then direct generation
of the OD from the DIANA net produced as a result of compilation could be performed.
This would require a layer of software which traverses the DIANA net and calls the

appropriate OD primitives as unit nodes are encountered. This approach would apparently

31

eliminate the possibility of directly editing the OD since the DIANA interface does not

support modifying the net, only reading it.

4.6 Navigation Through Large ODs - Alternatives

Because many Ada software systems are fairly large in size and scope, some facility
for easily navigating the ODs generated for them must be provided. There are three
navigational methods presently being considered for use in the ODgen system. These include
(1) the creation of a "table of contents” for the system, (2) the direct navigation throughout
the system using a "point and click” interface similar to that provided in hypertext or in the
HyperCard application on the Apple Macintosh, and (3) a combination of these two methods.
In this section, these methods are described and the relative advantages and disadvantages
pertaining to each method are presented.

Index (or Table of Contents). An index, similar to that presented in the Xman
application provided with the X Window System, would be used to navigate among a system
of CSDs and ODs. After generating the CSDs and ODs, the user would be presented with
an ordered list of the diagrams. To view a diagram, the user would click on the index entry
and the corresponding CSD or OD would be displayed. The index entries would be created
as the respective diagrams are generated and stored in the GRASP/Ada library (see Section
6 below). The greatest advantage to this method is that the user may see the entire range of
diagrams at once - nothing is hidden. However, for a nontrivial system this may be a list of
daunting proportions requiring the user to have some familiarity with the system to be of any
use. This disadvantage may be offset by layering the index so that only top level diagrams

are presented at first, each containing links to a sublist of associated diagrams, etc. In

32

addition, icons or informative labels could be attached to each index entry to provide the user
with additional information regarding the diagram under consideration.

Direct Navigation Via ODs. With this method, after generating the CSDs and ODs
for an Ada system, the user would be presented with the top level diagram for the system.
The user could reach other diagrams in the system by clicking on the OOSD symbols in the
top level diagram: this would bring up the associated subdiagram or CSD on the screen. The
user is allowed to click on procedure, function, and task entry calls in the OD directly and
a separate OD window is opened containing the selected OD or fragment thereof (there may
be a problem using/implementing this approach since the mouse is also used for editing).
Browsing the OD in this manner would be much like working with hypertext, and would
provide some of the advantages and disadvantages associated with hypertext. For example,
the user may gain an incomplete view of the system by following odd threads throughout it.
The user may also have to sift through a great deal of high level detail to get to low level
components. This might prove frustrating in practice. However, the user would have the
freedom of navigating throughout the system in an logical manner.

Combination of Index and Direct Navigation. The two approaches discussed above
both have their relative merits and problems. A more desirable solution to the navigation of
large ODs possibly lies in the combination of these methods. By providing a linked series
of ODs and CSDs with a comprehensive listing of all diagrams, the user would have
unrestrained freedom in navigating throughout the system. Additional utility could be
provided by allowing the user to "mark” viewed and unviewed diagrams in the index, and by
maintaining a list of recently visited diagrams. However, this approach would be more

difficult to implement and would take careful analysis and design to be effective.

33

4.7 Exploding/Imploding the OD

The OD window should provide the user with the capability to explode or implode
the OD based on Ada constructs and complete diagram entities (e.g., procedures, functions,
tasks and packages). This capability directly combines the ideas of chunking with the major
threads of control flow which are major aids to comprehension of software. The OD can be
supplemented by architectural CSD (ArchCSD) [DAV90], a diagram produced by collapsing
the CSD based on procedure, function, and task entry calls, and the control constructs that

directly affect these calls.

4.8 Generating a Set of ODs

Since GRASP/Ada is to be used to process and analyze large existing Ada software
systems consisting of perhaps hundreds of files, an option to generate all the CSDs at once
is required. Generating a set of ODs should be facilitated by entering a wildcard file name
(e.g.. *.a). An OD generation summary window should display the progress of the
generation by listing each file as it is being processed and any resulting error messages. The
summary should conclude with number of files processed and the number of errors
encountered. The default for each OD file name is the source file name with .od appended.
Generating a set of ODs can also be considered a user interface requirement rather than

strictly a OD generator requirement.

4.9 Printing An Entire Set of ODs

Printing an entire set of ODs in an organized and efficient manner is an important
capability when considering the typically large size of Ada software systems. A book format
is under consideration which would include a table of contents and/or index. In the event

34

GRASP/Ada is integrated with IDE/StP/ADE, the StP Document Preparation System could

possibly be utilized for this function.

4.10 Relating the CSD and OD - Alternatives

For each OD in the system under scrutiny, the user will have the ability to click the
mouse on any OOSD symbol in the diagram and be presented with the underlying CSD or
a subsequent level of OD, if it exists. In addition, a button will be provided on each OD or
CSD window allowing the user to step back up one level in the diagram hierarchy to see the
"parent” diagram. In this manner, the user will be able to fully traverse the ODs and CSDs
comprising the system using a "point and click" approach. In addition, the user may choose
to bypass the hierarchical traversal by simply choosing the diagram to be viewed from the
index list of diagrams.

Each CSD corresponds to an object symbol (e.g., procedure, function, package, task,
task entry). These may be nested and may each have an interface and a body. Conceptually,
the CSD may be collapsed to a graphic symbol. A group or system of these symbols could
be interconnected (logical inclusion and/or invocation) to form an object diagram. This could
be thought of as "growing" or synthesizing the system diagram. The user would be able to
open any of these symbols to see the lower level diagram associated with it.

If the StP/ADE system is to be used for viewing the ODs and CSDs, the ODs could
be viewed directly. The CSD could be displayed as an annotation in StP/ADE. This would
require that the CSD font be downloaded into the appropriate StP/ADE window for the

diagram to be viewed properly.

35

4.11 Index and Table of Contents Relating the CSDs and ODs

An index of all CSDs and ODs should be available via the GRASP library. The index
should be presented in a window to the user, and upon the selection of an index entry, an
appropriate CSD window should be opened. The index will provide an additional means of
navigation among diagrams in an interactive mode, and it will be the basis for printing a
complete set of all diagrams. See the section below entitled, "The GRASP Library" for more

information.

36

5.0 User Interface

GRASP/Ada user interface was developed using the X Window System, Version 11
Release 4 (X11R4). The X Window System, or simply X, meets the GRASP/Ada user
interface requirements of an industry-standard window based environment which supports
portable graphical user interfaces for application software. Some of the key features which
make X attractive for this application are its availability on a wide variety of platforms,
unique device independent architecture, adaptability to various user interface styles, support
from a consortium of major hardware and software vendors, and low acquisition cost. With
its unique device independent architecture, X allows programs to display windows on any
hardware that supports the X Protocol. X does not define any particular user interface style
or policy, but provides mechanisms to support many various interface styles.

The Version 2 prototype user interface provided windows for source code text editing
and windows for Control Structure Diagrams (CSDs) viewing in a limited fashion. The
Version 3 prototype user interface, which is a significant extension of Version 2, allows the
user to open one or more source windows to read or edit source code in the usual way. The
user may open one or more CSD windows, indicate corresponding source files and CSD files,
and then generate the CSD from each of the indicated source files. If the CSD was generated
previously, the source file is not required by the CSD window. In either case, the CSD
window allows the user to scroll through the CSD. Other options in include Print CSD, Save,
etc.

The Version 3 prototype user interface, being developed during Phase 3, represents

a significant enhancement of the Version 2 prototype user interface. Much of the

37

enhancement is related to the development of the intermediate representation of the CSD and
the more intuitive generation and manipulation of the CSD. The specifications and figures
that follow are intended to define the look and feel of the GRASP/Ada User Interface as well
as indicate much of its current and future functionality. The Ada source code used in the
figures was extracted from the AERO.DAP.PACKAGE provided by NASA to test the CSD

generator. Complete CSDs for the files processed are included in Appendix C.

5.1 System Window

The System window, shown in Figure 6, provides the user with the overall
organization and structure of the GRASP/Ada tool. Option buttons include: General, Source
Code, and Control Structure Diagram. These are briefly described below. A future button
is planned for Object Diagram.

General - This option provides access to the environment including loading of fonts

for X and selection of printers.

Source Code - This option allows the user to open one or more windows for viewing

and editing source code.

Control Structure Diagram - This option allows the user to open on¢ or more

windows for viewing CSDs.

5.2 Source Code Window

The Source Code window, shown in Figure 7, provides the user with the general
capabilities of a text editor. It is included in the GRASP/Ada system for completeness since
the system uses source code as its initial input. The user may elect to use any suitable editor
callable from the X environment. A future version of GRASP/Ada will allow the user to edit

38

npa‘uJngne*3uagssodd
OEEP-PbB (G0Z) 429ua) Y3TT4 @oedg Treysdey Rq ‘qued ur “papunyg
(PEG-6PBIE W ‘RATsuaaTun uangny

TTeH ueisung /0T 0667 “farsdaatun uangny
duTJaaauraduy pue aduaTIg§ J3qNdUO]
40723471 1q0afoud ‘1T ssod) °*H Sauer 0°2 UOTSJIN

$72€U0D ‘S]UAUU0D JO UOTRBUIO JUT J04

0°CA BPY/dSVHD

_:muwmﬂm a4nqanJ41s ﬂouucou_ovou oou:om_amuo:ow

suotadg 0°2A ©PH/dSHEY

epedseah [N}

Figure 6. GRASP/Ada System Window

39

(47 pus
437 pue
J* (UL1VI0TIHAINDIS) - ULTI0TIHG =i BOUWII THd
ssye
(YL1307IHd »% B08YITIHJ
W1 WSIIATTNNGGTLAIT 4T
es[e

f1SI1U0HS " THd »¢ B0ud3"IHd
U (MIUNNTAIA0TIHGO > (1SILWOHSTIHAISHY) JT

L) pue
ST ING 5 1S3L40HS T IHd
os[e
PETH o (WLIIUTIHSINOIS) - WiT1IG IHd 8% 1STLB0HS IHd
udqgY (017N =< (H11307IHJ)SaY) 2T
[T3E]
(411307 THd =0 304437 IHd
YUY ((JUQTIHIINOIS) BIDILRL » (COHDI THIINDIS) UIDIUNT 4T -

Tgu0™INd - OMITIHd »¢ B11307INd

== 108 804 WIIS 1035300 HIIN W03 e 1334801 WIWAILI0 —

ujdeq

S HITSDUTBYLS owpad0ud

€0°09€C =i JNIS B WIS WL I 3TN
107081 »i ITONIS WS WIS Wwesuod § (81 W
£0°0 »& IVINIS WIS ¢ 1SILUOHS Ind
$0°0 =% JVONISTHWIS ¢ WIII0TIHd

L tosweniiin) — W) 303 343 0INOILISOJ - GMDSIW GHIS DI W0V —

ST 304X0UdT0HITSIXUTAYLS Apoq sdexyoed
_ v’ depaiae/opoaTRIsu/sE0R /R [[A/INOY/ NTdUY, —Eqm—amww—auwo_Judu
I3 DR LY

0°CA BPY/dSVHD

—eo..u:c 8NPNITS -Z\..Bu—v«x.u -u.l-cw_ Ve Joueg

SUOT¥0 0°ZA *PH/JSUED

epedsedd (V)

OF POOR QUALITY

ORIGINAL PAGE IS

40

Figure 7. GRASP/Ada Source Code Window

the CSD directly, making a pure text editor redundant.
The source file and its associated directory path are entered and displayed at the top
of each window. See the Control Structure Diagram Window below for details on the menu

options.

5.3 Control Structure Diagram Window
The Control Structure Diagram window, shown in Figure 8, provides the user with
capabilities for generating and viewing a CSD for an Ada source file. Multiple CSD
windows may be opened to access several CSD files at once. The source file and the CSD
file names and their associated directory paths are entered and displayed at the top of each
window. When the CSD window is opened initially, the source file with a .csd extension is
displayed as the default. In the current version of GRASP/Ada, generation of the CSD is
done on a file-level basis where each file contains one or more units. When changes are
made to the source code, the entire CSD for the file involved must be regenerated. Future
versions of GRASP/Ada will address incremental regeneration of the CSD in conjunction with
editing capabilities in the CSD window. The CSD window options are described below.
File - This option allows the user to select from numerous options including:
Load - This option loads a CSD file. A window is presented to the user that
allows the user to select a file from current directory (see Figure 9).
Save - This option saves the CSD file with the same name as was loaded.
Save as ... - This option saves the CSD file with a new name.
Print - A window is presented which allows the user to select various print

options such as point size, page numbers, and header.

41

31 pud

“(89ETN « (VLI13IQTIHJINILIS) » VL1307 IHd = YO¥¥3 IHd ||¥.
ss(als

w

1

H

'Y11307IHd =¢ HOYY3ITIHd
U343} YSYIAIYTNMOOTLIIN 4

as|®
“1SILUOHS™ IHd =i HOYY3™ IHd
uaYy} (Y3IANNTYIA0TIHAG > (LSILYOHS IHd) sqe) 4!

‘

{41 pud

“Y11307IHd =+ 1S31d0HS™ IHd ||#L
5|9

S(B9E"N = (V11307 IHAINOIS) = ¥YL1307IHd =: 1S31Y0HS IHd
uayy (891N =< (V11307 IHd) sqe) !

.

iy pue
17 pue
2
(30
o
0™ 1417 4T
esje
30343”1Hd

LB0HS THJ) SBY) 4T

137 puo
L1Y0HSTIHd
ese
130HS " IHd
611307 IHd)SaY) 4T

TIHd =% 304437 IHd

wiye

(OMI"IHJINILS) ¥IOIUNT JT

eS|t Hd - OMITIRd »¢ WIVWTIRd
1i
V11307 IHd =i YOYY3ITIHd —i sl 113450 IMIMA3LH0 —
uayy ((dvO IHdINDIS) .¥IDILINT = ((QHITIHAINDIS) HI9ILINI St

“dYQTIHd - OWJ IHd = V11307 IHd — ujdeg
-- 1704 404 NOIS 1334H0J HLIM J0d4d3 MNNvE 1339400 3NIRY3L30 -- . BT OMDTSIXYTGMLS ewpedasd

|||||||||||||||||||||||||||||| C—Ovﬂ STBY WIS WeILad I 3TN

! STB WIS WU | (BTN

— INISTMH WIS ¢ 1SI1U0HS IHd

S} DIUImux<|m<hm OLDVUUOLQ JWAIS B WIS 2 ¥I10TIRd

—“Ame.n.s:vouva\vvoucl-oc\naomWNJWM—q:\otbz\dCtncwl ,—v:—u—A«WW—uUMP_-—Mk YU|wwxcnsz~m 0f wl0y —

ST 390D TSIXB8YLS Fpoq edexaed

0°CA ®PY/dSVHD

8° dUPOII /IPOITVERU /8803 /NO T TR/ IUOY/ T DUy

G) G S

ﬂ:nuucqa [E dnLJCou_uﬁeu uu;:Om_—nuv:vu

VG0 0°2A *PY/dSHAD

epedsedd [N

Figure 8. GRASP/Ada CSD Window

ORIGINAL PAGE IS

42

OF POOR QUALITY

¥

NAL PAGE 15
POOR QUALITY

1307 THAINSIS) » Y1307 IHd = YOud3 IHd
940 s
»° poduwed (4] pus
JJuinued | BY3T THd T
*PaESSIA | G741 SN sape
ety sas | pd
o 1a7gss 19 P }T1417 Y
sd"pad*e°aTgsgIq m (3¢
psa‘waTEgglq ¥0UY3 " IHd i . e (Y]
®°3TESSTIq Hd) mpe) 4 . L30HSTIHd) SBU) JT
*uyed1e b I pue .
o pupod1e . A
e pIndosew - -
tintosee | PLYOHS™IH |~; : DO
v jdepases S{e H : L30HS ™ IHd
1d°psa-e” deposow e W00 I Se 4T
— u”uu_x.%- 8 LYOHS™ 1Hd ‘ "IN w3 043 IHd !
1e3.mosper YN Rd) sqe) bwm_oﬁ (OW) THIINOIS) , HITIUNT 4T —
Hd = OMITIRd % U11307IHd

P88 dePOIAC /9POITNSEU/BE0II/ROT T TR/ GUOL/ RINTdN A= HOYY3I IHd ||#-OI.
190705 | (8000 .«E..I; ooy | ewoy wva Y3IDILNT 3¢
nRusv0 & @m-”:mwumm_-m@m_lw uydeq

NOIS 12349400 HLIM YOUY¥I XNYQ 1334Y0D 3INIWY3L3Q --

Si GHI~SIXY QY LS s4npedoud _

~ psae’ ° deposIR/2poa” cmoc\-ouux:o—::\o:etxoinaz,.\ —vcmm~m—\.-w—:o;—:m

WHUE 130300 MIMAILIN —

S1 MITSIXYT QYIS empeod

STHI WIS WeIBUed 1 3CTN
STBU WIS Wesuod 1 081N
INIS™dU WIS ¢ 1S31A0HSTIRd
JWONISTHU WIS ¢ ULN30IHd

= opUYA 05D (Y 375347 BYLS 0L WI0Y --

ST 300064 0MD"SIXY"BYLS Rpoq 2dended
— ¥ depo.ae/apad” -ncC\:eLu\.&—::\v:o.(a:znut..\ —v::ﬁ.:vuﬁau;_o:u

0°CA BPY/dSVH)

ORIG

OF.

43

—.l.»uaa *NNIYS —ougu—agu cuk.em—:..!.ou

BUOTI0 0°2A PPY/JSUE9

s -

Figure 9. GRASP/Ada File Selection Window

Open Source - This option opens a source window with the source file that
corresponds to the current CSD file. The purpose of this option is to facilitate
editing of the source file in the absence of CSD editing capabilities in the
CSD window.
Quit - The CSD window is closed.
View - This option allows the user to select from options including: Enable Collapse
{Disable Collapse}, Suppress CSD {Show CSD}, Open TOC window, and Open
Index window (Colors will be a future option).
Enable Collapse {Disable Collapse} - This option allows the user to collapse
the CSD based on its control constructs.
Suppress CSD {Show CSD} - This option allows the user to suppress or hide
the CSD giving the appearance of prettyprinted code.
Open TOC Window - This option accesses the GRASP library and displays
a table of contents based on Ada scoping.
Open Index Window - This option accesses the GRASP library and displays
an index of units in alphabetical order.
Edit - This option allows the user to modify the CSD and the associated source code.
Currently, this is a proposed future option which may become an integral function of
the CSD window.
Find - This option allows the user to perform search and replace operations.
Currently, this is a proposed future option which may become an integral function of

the CSD window when editing capabilities are added.

Generate - This option allows the user to generate the CSD from the indicated source
file. Options include whether to generate with Table of Contents, with an Index, and
also Format options.
Generate CSD - generates the CSD from the source file entered at the top of
the CSD window: saves the CSD in the CSD file entered at the top of the
CSD window, and loads the CSD into the window.
.. with TOC - also generate a table of contents for the CSD.
.. with Index - also generate an index for the CSD.
.. with TOC/Index - also generate both TOC and index.
Format ... - This option allows the user to set horizontal and vertical spacing
such as margins, line spacing, and indentation of CSD constructs as well as
highlighting keywords by underlining, boldface, italics, or upper/lower case.
This option may also include items such as page numbers, headers, and
footers. Many of these formatting options are expected to be available via the

View option above.

45

6.0 The GRASP Library

The GRASP library provides the overall organization of the generated diagrams. The
file organization should use standard UNIX directory conventions as well as default naming
conventions. For example, all Ada source files should end in .a or .ada and the
corresponding CSD files should end in .a.csd. For each procedure, function, package, task,
task entry, and label, a GRASP library entry is generated. The library entry should contain
the following fields.

identifier - note: unique key should be composed of the identifier + scoping.

scoping/visibility

type (procedure, function, etc.)

parameter list - to aid in overload resolution.

source file (file name, line number) - note: the page number can be computed from

the line number.

CSD file (file name, line number)

OD file (file name)

"Referenced by" list

"References to" list
Alternatives for generation and updating of the library entries include the following.

(1) During CSD generation, the library entry is established and the entry is

updated on subsequent CSD generations.

2) During the processing of DIANA nets.

46

Alternatives for implementing the GRASP library include (1) developing an Ada
package or equivalent C module which is called by the CSD generation routines during the
parse of the Ada source, (2) using the VADS library system along with DIANA, and (3)
using the StP TROLL/USE relational database system. Of these alternatives, the first one
may be the most direct approach since it would be the easiest to control. The VADS and StP
library approaches may be more useful with the addition of object diagram generation and

also with future integration of GRASP with commercial CASE tools.

47

7.0 Future Requirements

The GRASP/Ada project has provided a strong foundation for the automatic generation
of graphical representations from existing Ada software. To move these results in the
direction of visualizations to facilitate the processes of V & V, numerous additional
capabilities must be explored and developed. The proposed follow-on research is described
by tasks partitioned into three phases. A small team is expected to work on each phase for
a period of up to one year. Operational prototypes will be demonstrated at the end of each

phase.

7.1 Phase 1 - Generators and Editors for Visualizations

Phase 1 consists of five subtasks. The first is to formulate a set of graphical
representations that directly support V & V of Ada software at the algorithmic,
architectural and system levels of abstraction. This task will include an on-going
investigation of visualizations reported in the literature as currently in use or in the
experimental stages of research and development. In particular, specific applications of
visualizations to support V & V procedures will be investigated and classified. A small, but
representative, Ada program will be utilized to formulate and evaluate a set of graphical
representations, and the feasibility of reverse engineering the diagrams from Ada PDL and
source code will be evaluated. These graphical representations are expected to undergo
continual refinement as the automated tools that support them are developed.

The second subtask of Phase 1 is to design and implement a prototype software

tool to generate visualizations from various levels of Ada PDL to support V & V during

48

detailed design. The previous efforts of the GRASP/Ada project have focused on the
generation of graphical representations from syntactically correct Ada source code. Since
most detailed design is done in an Ada PDL which is less rigorous than Ada, the capability
to generate visualizations directly from PDL is required to facilitate verification during the
detailed design phase of the life cycle. The diagrams generated in Phase 1 are expected to
focus on the algorithmic level of representation.

The third subtask of Phase 1 is to design and implement a prototype software tool
to generate visualizations from software written in C. Since much of NASA’s production
software is currently being written in a combination of C and Ada, the capability to generate
visualizations from C source code is required to support visual verification of the integrated
software system. And since C is intrinsically less readable than Ada, maintenance personnel
may greatly benefit from algorithmic-level diagrams generated from C source code.

The fourth subtask of Phase 1 is to design and implement a prototype graphically-
oriented editor which provides capabilities for dynamic reconstruction of the diagrams
generated in the tools described above. This capability will directly support visual
verification at its most primitive and important levels, as PDL or source code is entered or
modified. In this mode, the graphical representation can provide immediate visual feedback
to the user in an incremental fashion as individual structural and control constructs are
completed. The present GRASP/Ada prototype generates the graphical representation only
after a complete compilation unit of source code has been entered correctly.

Finally, the fifth subtask of Phase 1 is to design and implement a user interface
capable of supporting a state-of-art multi-windowing paradigm. The user interface for
the tools developed in this research project will be built using the X Window System. This
should facilitate eventual integration of the tools into any Ada programming support

49

environment (APSE) which runs under a similar window manager. In addition, this multi-
windowing paradigm will allow the toolset to take full advantage of the current capabilities

of powerful workstation hardware.

7.2 Phase 2 - Evaluation and Extension

Phase 2 consists of five subtasks. The first is to continue the tasks defined in Phase
1 with respect to refinement of the V & V process, implementation of the prototype
tools, and intertool communication. The results of the investigation in Phase 1 will be used
to refine the V & V process and the visualizations which support the process. The individual
tools prototyped in Phase 1 will be integrated through a window manager for the X Window
System. The user interface and a persistent storage mechanism such as DIANA will provide
the basis for intertool communication.

The second subtask of Phase 2 is to evaluate the individual tools developed in
Phase 1. Representative sets of programs written in PDL, Ada and C will be utilized to
evaluate the set of graphical representations generated by the prototype. These graphical
representations and the autornated tools that support them are expected to undergo continual
refinement during Phase 2.

The third subtask of Phase 2 is to design and implement a prototype software tool
for generating architectural diagrams (ADs) from Ada PDL and a combination of Ada
and C source code, to support the process of V & V. The Phase 1 prototype, which
focused on the generation of an algorithmic notation, will be extended to include architectural
diagrams. This task will include (1) development of procedures for identifying and recording
module interconnections, (2) development of algorithms for architectural diagram layout, and
(3) development of methods for displaying/printing architectural diagrams on hardware

50

available for this research. The tool will be used on representative Ada software. The
generated set of graphical representations will be evaluated for completeness, correctness, and
general utility as an approach to reverse engineering.

The fourth subtask of Phase 2 is to investigate the potential for integration of the
toolset with currently available commercial systems. Commercial CASE systems and
APSEs will be surveyed to determine appropriate commercial systems to target for
integration. Many vendors are currently developing "open architecture” systems to facilitate
the integration of third party tools.

The fifth subtask of Phase 2 is to investigate the use of visualization tools to
support software testing, particularly unit level branch coverage analysis. Software
testing is an important and essential component of V & V. Visualization tools are extremely
useful for analyzing and reporting branch coverage. In addition, they may be very useful for
graphically selecting a path for which data items to drive the path should be generated. This
task would be done in conjunction with QUEST/Ada, a related project which has focused on

the theoretical issues of test data generation [BRO90].

7.3 Phase 3 - Evaluation and Integration with Commercial Systems

Phase 3 has three subtasks. The first is to complete the tasks defined in Phases 1
and 2 with respect to refinement, intertool communication, and integration of an
operational prototype. In particular, the user interface will be completed as a basis for
overall integration of the prototype tools.

The second subtask of Phase 3 is to evaluate the toolset developed in Phases 1 and
2. Software systems which are representative of three levels of size and complexity, will be
utilized to evaluate the set of graphical representations generated by the prototype as well as

51

the prototype itself. These systems will be written in Ada/PDL, Ada, C, or a combination
of Ada and C. The graphical representations generated and the prototype are expected to
undergo continual refinement as a result of the evaluation.

The third and final subtask of Phase 3 is to integrate with currently available
commercial systems those components of the prototype toolset which show the most
promise for improving V & V. The results of the survey of commercial CASE systems and
APSEs conducted in Phase 2 and the ongoing evaluation of the prototype tools will be used

to determine appropriate commercial systems to target for integration.

52

ADAR3

ADOS85

ADOBS8S8

AMBS89

BENSS

BIG89

BOO8&3

BOO86

BOO87a

BOO87b

BROS80

BROYS0

BIBLIOGRAPHY

The Programming Language Ada Reference Manual. ANSI/MIL-STD-1 815A-
1983. (Approved 17 February 1983). In Lecture Notes in Computer Science,
Vol. 155. (G. Goos and J. Hartmanis, eds) Berlin : Springer-Verlag.

Adobe Systems Inc. POSTSCRIPT Language Reference Manual, (3rd Ed.)
Reading, MA: Addison-Wesley, 1985.

Adobe Systems Inc. POSTSCRIPT Language Program Design, Reading, MA:
Addison-Wesley, 1988.

Amber Allen L. et al. "Influence of Visual Technology on the Evolution of
Language Environments," IEEE Computer, Vol. 22, No 10, October 1989, 9-
22.

Bennett, Steven J. and Randall, Peter G. The LaserJet Handbook: A Complete
Guide to Hewlett-Packard Printers and Compatibles, New York: Brady. 1988.

Biggerstaff, Ted J. "Design Recovery for Maintenance and Reuse,” /IEEE
Computer, July 1989, 36-49.

Booch, Grady. Software Engineering with Ada. Menlo Park, CA : The
Benjamin/Cummings Publishing Company, Inc., 1983.

Booch, Grady. "Object-Oriented Development," [EEE Transactions on
Software Engineering, Vol. SE-12, No. 2, February 1986, 211-221.

Booch, Grady. Software Engineering with Ada. (Second Edition). Menlo
Park, CA : The Benjamin/Cummings Publishing Company, Inc., 1987.

Booch, Grady. Software Components With Ada : Structures, Tools, and
Subsystems. Menlo Park, CA : The Benjamin/Cummings Publishing
Company, Inc., 1987.

Brosgol, B.M., et al. TCOLada: Revised Report on An Intermediate
Representation for the Preliminary Ada Language. Technical Report CMU-
CS-80-105, Carnegie Mellon University, Computer Science Department,
February 1980.

D. B. Brown, K. H. Chang, W. H. Carlisle, and J. H. Cross, "QUEST -

Testing Tools For Ada,"” Task I, Phase 2 Report of "The Development of a
Program Analysis Environment for Ada,” G. C. Marshall Space Flight Center,

53

BUHg9

CARS1

CHER6

CHISO

CHO90

COH86

CROS88

CRO89

CRO9%0a

CRO9%90b

CRO9%0c

NASA/MSEC, AL 35821 (NASA-NCCB8-14), August 1990, 85 pages +
Appendices.

Buhr, R. J. A, Karam, G. M., Hayes, C. J., and Woodside, C. M. "Software
CAD: A Revolutionary Approach,” IEEE Transactions on Software
Engineering, Vol. 15, No. 3, March 1989, 235-249.

W. H. Carlisle, J. H. Cross and S. R. Allen, "Exchange Functions in Ada,”
Journal of Pascal, Ada and Modula 2, Vol. 10, No. 3, May/Jun. 1991,
accepted for publication.

Cherry, George W. PAMELA Designer's Handbook, Volume 2, Analytical
Sciences Corp., Reading, MA, 1986.

E. J. Chikofsky and J. H. Cross, "Reverse Engineering and Design Recovery
- A Taxonomy," IEEE Software, Jan. 1990, 13-17.

Choi, Song and Scacchi, Walt. "Extracting and Restructuring the Design of
Large System,” IEEE Software, January 1990, 66-71.

Cohen, Norman H. Ada as a second language. New York : McGraw-Hill
Book Company, 1986.

Cross, J. H. and Sheppard, S. V. "The Control Structure Diagram: An
Automated Graphical Representation For Software,” Proceedings of the 21st
Hawaii International Conference on Systems Sciences, January 6-8, 1988, 446-
454.

Cross, J. H., Morrison, K. L., May, C. H. and Waddel, K. C. "A Graphically
Oriented Specification Language for Automatic Code Generation (Phase 1)",
Final Report, NASA-NCC8-13, SUB 88-224, September 1989.

J. H. Cross, K. 1. Morrison, C. H. May, "Generation of Graphical
Representations From Source Code," Proceedings of the Southeast Regional
ACM Computer Science Conference, April 18-20, 1990, Greenville, South
Carolina, 54-62.

J. H. Cross, "GRASP/Ada Uses Control Structure," IEEE Software, May 1990,
62.

J. H. Cross, et.al., "Reverse Engineering Tools For Ada,” Task 2, Phase 2
Report of "The Development of a Program Analysis Environment for Ada,”
G. C. Marshall Space Flight Center, NASA/MSFC, AL 35821
(NASA-NCCS8-14), August 1990, 78 pages + Appendices.

54

CRO9S0d

CRO91

DAUS0

DAV90

FOR&8

GOO083

GOU8S

HAM79

HOLZR38

HOLS89

HPC87

KRAS89

LEH89

LYO86

J. H. Cross, S. V. Sheppard and W. H. Carlisle, "Control Structure Diagrams
for Ada," Journal of Pascal, Ada, and Modula 2, Vol. 9, No. 5, Sep./Oct.
1990.

J. H. Cross, E. J. Chikofsky and K. 1. Morrison, "Reverse Engineering,”
Advances in Computers, Vol. 33, 1991, in process.

Dausmann, M., et al. AIDA Introduction and User Manual. Technical Report
Nr. 38/80, Institut fuer Informatik II, Universitaet Karlsruhe, 1980.

Davis, R. A., "A Reverse Engineering Architectural Level Control Structure
Diagram,” M.S. Thesis, Auburn University, December 14, 1990.

Forman, Betty Y. "Designing Software With Pictures,” Digital Review, July
11, 1988, 37-42.

Goos, G. et al. DIANA: An Intermediate Language for Ada (Revised Version).
In Lecture Notes in Computer Science, Vol. 161. (G. Goos and J. Hartmanis,
eds.) Berlin : Springer-Verlag, 1983.

Gould, John D. and Lewis,Clayton. "Designing for Usability: Key Principles
and What Designers Think,” Communications of the ACM, Vol. 28, No. 3,
March 1985, 300-311.

Hamilton, M. and Zeldin, S. "The Relationship Between Design and
Verification," The Journal of Systems and Software, Elsevier North Holland,
Inc., 1979, 29-56.

Holzgang, David A. Understanding POSTSCRIPT Programming (2nd Ed.)
San Francisco, CA: Sybex, 1988.

Holzgang, David A. POSTSCRIPT Programmer’s Reference Guide, Glenview,
IL: Scott, Foresman, 1989.

LaserJet Series 1l Printer User's Manual, (2nd Ed.) Boise, ID: Hewlett-
Packard Company, 1987.

Kramer, Jeff, et al. "Graphical Configuration Programming,” JEEE Computer,
Vol. 22, No. 10, October 1989, 53-65.

Lehr, Ted, et al. "Visual Performance Debugging," IEEE Computer, Vol. 22,
No. 10, October 1989, 38-51.

Lyons, T.G.L. and Nissen,].C.D., eds. Selecting an Ada environment. New

York : Cambridge University Press (on behalf of the Commission of the
European Communities), 1986.

55

MARSS5

McDg4

McK86

MENg9

NES81

NORS6

OBR89

PER80

PRES7

ROE90

ROMB&9

ROS85

SCH&89

Martin, J. and McClure, C. Diagramming Techniques for Analysts and
Programmers. Englewood Cliffs, NJ : Prentice-Hall, 1985.

McDermid, John and Ripken, Knut. Life cycle support in the Ada
environment. New York : Cambridge University Press (on behalf of the
Commission of the European Communities), 1984.

McKinley, Kathryn L. and Schaefer, Carl F. DIANA Reference Manual. Draft
Revision 4 (5 May 1986). Bethesda, MD : Intermetrics, Inc. Prepared for
Naval Research Laboratory, Washington, D.C., 1986.

Mendal, G. et al. The Anna-I User’s Guide and Installation Manual. Stanford,
CA : Stanford University (Program Analysis and Verification Group :
Computer Systems Laboratory), September 22, 1989.

Nestor, J.R., et al. IDL - Interface Description Language: Formal Description.
Technical Report CMU-CS-81-139, Carnegie Mellon University, Computer
Science Department, August 1981.

Norman, Kent L., Weldon, Linda J., and Shneiderman, Ben. "Cognitive
layouts of windows and multiple screens for user interfaces," International
Journal of Man-Machine Studies, Vol. 25, 1986, 229-248.

O’Brien, Caine. "Run-Time Reverse Engineering Speeds Software
Troubleshooting," High Performance Systems, November 1989, 41-48.

Persch, G., et al. AIDA Reference Manual. Technical Report Nr. 39/80,
Institut fuer Informatik II, Universitaet Karlsruhe, November 1980.

Pressman, Roger S. Software Engineering: A Practitioner's Approach,
McGraw-Hill, New York, NY, 1987.

Roetzheim, William H. Structured Design Using HIPO 11, Prentice-Hall,
Englewood Cliffs, NJ, 1990.

Roman, Gruia-Catalin, et al. "A Declarative Approach to Visualizing
Concurrent Computations,” IEEE Computer, Vol 22, No. 10, October 1989,
25-36.

Rosenblum, David S. "A Methodology for the Design of Ada Transformation
Tools in a DIANA Environment," IEEE Computer, Vol. 2, No. 2, March
1985, 24-33.

Schwanke, R. W., et al. "Discovering, Visualizing, and Controlling Software

Structure,” Proceedings of the Fifth International Workshop on Software
Specification and Design, May 19-20, 1989.

56

SELRS5

SHAR9

SHUSS

SIE&S

SMIg&8

SNO86

STAS8S

TEI&1

TRI8Y

WARBSS

WASS9

WHIgZS8

YOUg9

R. Selby, et. al., "A Comparison of Software Verification Techniques,” NASA
Software Engineering Laboratory Series (SEL-85-001), Goddard Space Flight
Center, Greenbelt, Maryland, 1985.

Shannon, K. and Snodgrass, R. Interface Description Language : Introduction
and Manual Pages. Chapel Hill, NC : Unipress Software, Inc. (University of
North Carolina), May 1, 1989.

Shu, Nan C. Visual Programming, New York, NY, Van Norstrand Reinhold
Company, Inc., 1988.

Sievert, Gene E. and Mizell, Terrence A. "Specification-Based Software
Engineering with TAGS," IEEE Computer, April 1985, 56-65.

Smith, Thomas, et al. "A Standard Interface to Programming Environment
Information.” In [HEI88], 251-262, 1988.

Snodgrass, R. and Shannon, K. Supporting Flexible and Efficient Tool
Integration. SoftLab Document No. 25, Chapel Hill, NC: Department of
Computer Science, University of North Carolina, 1986.

Standish, T., "An Essay on Software Reuse," IEEE Transactions on Software
Engineeering, SE-10 (9), 494-497, 1985.

Teitelbaum, T. and REPS T., "The Comnell Program Synthesizer: A Syntax
Directed Programming Environment, Communications of the ACM, 24, 9
(Sep.), 563-573.

Tripp, L. L. 1989. "A Survey of Graphical Notations for Program Design -An
Update," ACM Software Engineering Notes, Vol. 13, No. 4, 1989, 39-44.

Warren, W.B., et al. A Tutorial Introduction to Using IDL. SoftlLab
Document No. 1, Chapel Hill, NC: Department of Computer Science,
University of North Carolina, 1985.

Wasserman, A. L, Pircher, P. A. and Muller, R.J. "An Object Oriented
Structured Design Method for Code Generation,” ACM SIGSOFT Software
Engineering Notes, Vol. 14, No. 1, January 1989, 32-52.

Whiteside, John., Wixon, Dennis, and Jones, Sandy. "User Performance with
Command, Menu, and Iconic Interfaces,” in Advances in Human Computer
Interaction, Vol. 2, ed. Hartson, Rex H., and Hix, Deborah, Norwood NY,
Ablex, 1988, 287-315.

Young, Douglas A. Window Systems Programming and Applications with Xt,
Prentice Hall, Englewood Cliffs, New Jersey 07632, 1989.

57

APPENDICES

"Reverse Engineering and Design Recovery: A Taxonomy"
by E. Chikofsky and J. Cross

"Control Structure Diagrams For Ada"
by J. Cross, S. Sheppard and H. Carlisle

Extended Examples

58

Appendix A

"Reverse Engineering and Design Recovery : A Taxonomy"
by

Elliot J. Chikofsky
Index Technology Corp.

and

James H. Cross II
Auburn University

Published in JEEE Software, January 1990, 13-17.

Reverse Engineering
and Design Recovery:
A Taxonomy

Reverse engineering is
evolving as a major
link in the software

life cycle, but its
growth is hampered
by confusion

over terminology.
This article defines
key terms.

January 1990

he availability of computcr-aided sys-

tems<cnginecring environments has

redefined how many organizations
approach system development. To meet
their true potential, CASE environments
arc being applied to the problems of
mainuining and enhancing cxisting sys-
tems. The key lies in applying reverseen-
gincering approachesto software systems.
However, an impediment to success is the
considerable confusion over the termino-
logy used in both technical and market
place discussions.

It is in the reversccnginecring arena,
where the software maintenance and de-
velopment communities meet, that van-
ous terms for technologies to analyze and
understand existing systems have been
frequenty misused or applied in conflict-
ing ways.

In this article, we dcfine and relate six
terms: forward engineering, reverse engi-
neering, redocumentation, design recov-

PR

0740-7459/90/0100/0013/501.00 © 1990 [EEE

{ECEDING PAGE BLANK NOT FILMED

Elliot J. Chikofsky, index Technology Com. and Northeastem Universily
James H. Cross ll, Aubum University

cry, restructuring, and reengincering.
Our objective is Nt 10 Creale New Lerims
but to rationalize the terms alreadyin use.
The resulting dcfinitions apply to the un-
derlying enginecring processes, regard-
less of the degrece of automation applicd.

Hardware origins

The term “reverse engincering” has its
origin in the analysis of hardwarc —
where the practice of deciphering designs
from finished products is commonplace.
Reverse enginecring is regularly applied
to improve your own products. as well as
to analyze a competitor’s products or
those of an adversary in a military or na-
tional-security situation.

In 2 landmark paper on the topic, M.G.
Rekoff defines reverse engincering as
“the process of developing a sct of specifi-
cations for a complex hardware system by
an orderly examination of specimens of
that system.™ He describes such a process

13

ExECEDING PAGE BLANK NOT FILMED

Roqulun_ums
42‘:,”“,::_, o Design Implementation
business rules) "
- Forward Forward
I T-engineering | . engineering | | L
i< Reverse = - _Reverse
___________ ‘engineering” | . engineering | |
Design Design
recovery =TT =%reccwery
= <
Reengineering Reenpineering
(renovation) (renovation)
_‘ i Redocumentation,
Restructuring Restructuring restructuring

Figure L. Relationship between terms. Reverse engineering and related processes are
transformations between or within abstraction levels, represented here in terms of life-

cycle phases.

as being conducted by someonc other
than the developer, “without the benefit
of any of the original drawings ... for the
purpose of making a clone of the original
hardware system...."

In applying these concepts to software
systems, we find that many of these ap-
proaches apply to gaining 2 basic un-
derstanding of a system and its structure.
However, while the hardware objective
traditionally is to duplicate the system, the
software objective is most often to gain a
sufficient design-level understanding to
aid maintenance, strengthen enhance-
ment, or support replacement.

Software maintenance

The ANSI definition of software mainte-
nance is the “modification of a software
product after delivery to correct faults, to
improve performance or other auributes,
ortoadapt the product to a changed envi-
ronment,” according to ANSI/IEEE Std
729-1983.

Usually, the system's maintainers were
not its designers, so they must expend
many resources 10 examine and learn
about the system. Reverse-engineering
tools can facilitate this practice. In this
context, reverse engineering is the part of
the maintenance process that helps you
understand the system so you can make
appropriate changes. Restructuring and
reverse engineering also fall within the
global definition of software mainte-
nance. However, each of these three pro-
cesses also has a place within the contexts
of building new systems and evolutionary
development

14

Life cycles and
abstractions

To adequately describe the notion of
software forward and reverse engineer-
ing, we must first clarify threc dependent
concepts: the existence of a lifecycle
model, the presence of a subject system,
and the identification of abstraction lev-
els.

We assume that an orderly lifecycie
model exists for the software-develop-
ment process. The model may be repre-
sented as the traditional waterfall, asa spi-
ral, or in some other form that generally
can be represented as a directed graph.
While we expect there to be iteration
within stages of the life cycle, and perhaps
even recursion, its general directed-graph
nature lets us sensibly define forward
(downward) and backward (upward) ac-
uviues.

The subject system may be 2 single pro-
gram or code {ragment, or it may be a
complex sct of interacing programs, job-
control instructions, signal interfaces,
and data files. In forward engineering, the
subject system is the result of the develop-
ment process. It may not yet exist, or its
existing components may not yct be uni-
ted to form a system. In reverse engineer-
ing, the subject system is generally the
starting point of the exercisc.

In a life-cycle model, the early stages
deal with more general, implementation-
independent concepts; later stages €m-
phasize implementation details. The
transition of increasing detail through the
forward progress of the life cycle maps

well 10 the concept of abstraction levels.
Earlier stages of systems planning and re-
quirements definition involve expressing
higher level abstractions of the system
being designed when compared to the im-
plementation iself.

These abstractions are more closely re-
lated to the business rules of the entct-
prise. They are often expressed in uscr
terminology that has a one{o-many rela-
tionship o specific features of the fin-
ished svstem. In the same sensc, a blue-
print is a higher level absuaction of the
building it represents, and it may docu-
ment only one of the many models (clec-
tncal, water, hcaling/vcnljl;tlhn/air con-
ditioning, and cgress) that must come
together.

It is important to distinguish between
levels of abstraction, a concept that crosscs
conceptual stages of design, and degrees of
abstraction within a single stage. Span-
ning lifecycle phases involves a transition
from higher abstraction levels in carly
stages to lower abstraction levels in later
stages. Whilc you can represent informa-
tion in any life<ycle stage in detailed form
(lower degree of abstraction) or in mor¢
summarized or globa] forms (higher de-
gree of abstraction), these definitions em-
phasize the conceptof lrvels of abstraction
between life<cycle phases.

Definitions

For simplicity, we describe key terms
using only three identified lifecycle stages
with clearly different abstraction levels, as
Figure 1 shows:

» requirements (specification of the
problem being solved, including objec-
tives, constraints, and business rules),

* design (specificaion of the soluuon),
and

* implementation (coding, tesung, and
delivery of the operatonal system).

Forward engineering. Forward cngi-
neering is the wradivonal process of mov-
ing from high-level abstractons and logi-
cal, implcmcnlalion-indcpcndcnl
designs to the physical implementation of
asystemn.

While it may seem unnecessary — in
view of the long-standing use of design
and development terminology —to inuro-
duce a new term, the adjective “forward™

|IEEE Software

ORIGINAL PAGE IS
OF POOR QUALITY

has come 10 be used where it is necessary
1o distinguish this process from reverse
engineering. Forward engineering fol-
Jows a sequence of going from require-
ments through designing its implementa-
uon.

Reverse engineering. Reverse enginect-
ing is the process of analvzing a subject
svstem Lo

» identfy the system’s components and
their interrelanonships and

s create |‘cpu-.\‘<-nl;ui()ns()I’ the system m
another form or at a higher level of ab-
straction.

Reverse engineering generally volves
extructing designartifactsand buitding o
swthesizing abstactions thatare leas 1m-
plclncx\u\linn-(lcpcntlcnl. While reverse
engincering often involves an existing
functional system as its subject, this is nota
requirement. You can performreverse en-
gineering starting {rom any level of ab-
straction or at any stagee of the life cycle.

Reverse engineering in and of ielf
does nol involve changing the subject sys
LCI OF CICAUNT 4 HEW SYSIEm based on the
reversecngineered subject systen. Itis o
process of examination, NOL 4 Process of
change or replication.

In spanning the life=yele stages, reverse
engmeening covers a b oad range strtng
{rom the existing im[)lcmcuulliun_ recH -
turing or recreating the design, and
deciphering the requirements actually
implemented by the subject systemn.

There are many suburcas of reverse ¢n-
gincering. Two subarcas that are widely
referred 10 are redocumentadon and de-

SIEN TCCOVCTY.

Redocumentation. Redocumentation s
the creation or revision of a senmanncally
equivalent rcprcscnl;ui(m within the
same relative abstraction level. The result-
ing forms of representation are usually
considered alternate views (lor example,
dauflow, data structure, and conurol flow)
intended for a human audience.

Redocumentation is the simplest and
oldest form of reverse engineering, and
many consider it 1o be an unintrusive,
weak form of restructuring. The “re-" pre-
fix implies that the intentis to recover doc-
umentation about the subject system that
existed or should have existed.

January 1990

Some comunon tools used to perform
redocumentation are prety printers
(which display a code listing m an un-
proved form). diagram generators (which
create diagrams directiy from code, re-
flecing conuol flow or code structure),
and cross-reference listing generators. A
kev goal of these wols 1s 10 provide casier
wavs 1o vistualize relationships among pro-
grim COMPONCIis so you can recogize
and follow paths clearly.

Design receneny. Design recovery 1s it sub-

st of reverse engineenny in which dor

Reverse engineering in
and of itself does not
involve changing the
subject system. ltis a
process of examination,
not change or replication.

main knowledge, external infonnason,
and deduction or fuzzy reasoning are
added 10 the observations of the subjeat
svsten to idenuly wmcaningtul higher level
abstractions beyond those obtained di-
rectly by examiming the systen itsell.

Desigrn recovery is disunguished by the
sources and span of information it should
handle. According to Ted Biggerstall:
“Design recovery recreates design absuac-
Lons from # combination of code, exist-
ing design documentiuon (if available),
poersonal experience, and general knowl-
cdpe about problem and application do-
mains ... Design recovery maust reproduce
all of the informaton required for a per-
son 1o fully understnd what a program
does, how it does i, why it does it and so
forth. Thus, it deals with a far wider range
ol information than found in conven-
tional soliware-cngineering representa
dons or code.™

Restructuring. Restructuring ts the
transformaton from one rcprcscnlulion
form 1o another at the same relatve ab-
straction level, while preserving the sub-

OF2HGINAL

ject system’s external behavior {(func-
tionalin and semanucs).

A restructunng tanstormanon is often
one of appearance. such as altening code
o Improve its strucuare in the uadhdonal
sense of structured design. The term Tre-
structuring” came nto populiar uxe from
the code-to<ode wansform that recasts
program from an unstructured (Mspae
ghetd”) form o u suructured (goto-less)
form. However, the term has a hroader
meaning that recognizes the applicanon
of similar transformatons and recasung
techniques in reshaping data models, de-
sign plans, and requirements sSUricires.
Dat nornualization, lorexample, inadata-
to<tita restructuring transform to mi-
prove logical data model in the database
design process.

Many types of restructunng can be: per-
formed with a knowledge of structural
form but without an understanding of
meaning. For example, you can convert i
st of If statements into @ Case structuee,
or vice versa, without knowing the
pmgnun's purpose or anvthing about s
problem domiun.

While restructutig creales new vet-
sions that implement or propose change
1o the subject system, it does notnormaliy
imvolve modifications heciiese of new e
GUIrCICents. However, it oy dead o bet-
wer olservations of the subjectsystem that
suggest changes that would improve as
pects of the systen, Restructunng s olten
used as a form of preventive TR
10 improve the physical stae of the subject
systemn with respect to some prelerred
standard. [Cmay also involve adjusung the
subject system 1o mect new Cnvitontnen-
tal constrint that do notinvolve reassess

mentat higher abstraction levels.

Recagineering. Reengineering, abso
knowt as both renovation and reclamas
tion, is the examination and alteranon of
A subjectsystem o reconsutute it I new
form and the subsequent implementa-
tion of the new form.

Reengineering generally includes some
form of reverse engineering (to achicve 4
more abstract description) followed by
some {orn of forward enginecring or re-
structuring. This may include maodifica
tions with respect 1o new requircments
not met by the onginal systein. For exam-

15

PAGE IS

OF POOR QUALITY

Parser,
Semantic
7 analyzer

Software
work

vd

N

View »
composer(s) ——a] NEW view(s)

of product

« Format

product

information
base

« Graphics

« Documentation
« Metrics

« Logic

* Reports

Figure 2. Model of tools architecture. Most tools for reverse engineering, restructuring,

and reengineering use the sam

e basic architecture. The new views on the right may

themselves be software work products, which are shown on the left. (Model provided by
Robert Amoid of the Software Productivity Consortium.)

ple, during the reengineering of informa-
tion-management systems, an organiza-
tion generally reassesses how the system
implements high-level business rules and
makes modifications to conform to
changes in the business for the future.
There is some confusion of terms, par-
tcularly between reengineering and re-
structuring. The IBM user group Guide,
for example, defines “applicauon reen-
gineering” as “the process of modifying
the internal mechanisms of a system or
program or the data structures of asystem
without changing the functionality (sys-
tem capabilities as perceived by the user).
In other words, it is altering the how
without affecting the what ™ This is closest
to our definition of restructuring. How-

Design Issues

Alternatives
rejected

Forward
engineering

Ramifications
of decisions

Existing
design

Reverse
engineering

Code

Unplanned
ramifications
(side effects)

Figure 3. Difierences between
viewpoints. Although reverse engineenng
can help capture lost information, some
types of information are not shared be-
tween forward- and reverse-engineering
processes. However, reverse engineering
can provide observations that are un-
obtainable in forward engineering.

16

ever, two paragraphs later, the same publi-
cation says, “Itis rare thatan application is
reengineered without additional
functionality being added.” This supports
our more general definition of reengin-
eering.

While reengineering involves both for-
ward engineering and reverse engineer-
ing, it is not a supertype of the two. Reen-
gineering uses the forward- and
reverseengineering technologies avail-
able, but to date it has not been the princi-
pal driver of their progress. Both tech-
nologies are evolving rapidly,
independent of their application within
reengineering.

Objectives

What are we trying to accomplish with
reverse engineering? The primary pur-
pose of reverse engineeringa software sys-
tem is to increase the overall comprehen-
sibility of the system for both maintenance
and new development. Beyond the defini-
tions above, there are six key objectives
that will guide its direction as the techno-
logy matures:

» Cope with complexity. We must de-
velop methods to better deal with the
shear volume and complexity of systems.
A key to controlling these atributes is au-
tomated support. Reverse-enginecring
methods and tools, combined with CASE
environments, will provide a2 way to ex-
tract relevant information so decision
makers can control the process and the
product in systems evoluton. Figure 2
shows a model of the structure of most
rools for reverse engineering, recngineer-
ing, and restructuring.

« Generate alternate views. Graphical
representations have long been accepted
as comprehension aids. However, creat-
ing and maintaining them continues o be
a botteneck in the process. Reverseengi-

neering tools facibtate the generauon or
regeneration of graphical representa-
tions from other forms. While many de-
signers work from a single, pnmary per-
spective (like dataflow diagrams),
reverse-engineering tools can generate
additional views from other perspectives
(like control-flow diagrams, structurc
charts, and entitv-relationship diagrams)
10 aid the review and verification process.
You can also create alternate forms of
nongraphical representations with re-
verseengineering wols to forman por-
tant part of system documentation.

« Recover lost information. The contin-
uing evolution of large, long-lived systems
leads to lost information about the system
design. Modifications arc frequently not
reflected in documentation, particularly
ata higher level than the code tself. While
it is no substitute for preserving design
history in the first place, reverse engineer-
ing — particularly design recovery — is
our way Lo salvage whatever we can from
the existing systems. It lets us get a handle
on systems when we don’t understand
what they do or how their individual pro-
grams intcractasa system.

e Detect side effects. Both haphazard
initial design and successive modifica-
tions can lead to unintended ramifica-
tions and side effects that impede a
system's performance in suble ways. As
Figure 3 shows, reverse engincering can
provide observations beyond those we can
obuwain with a forward-engincening per-
spective, and it can help detect anomalies
and problems before users report them as
bugs.

* Synthesize higher abstractions. Re-
verse engineering requires methods and
techniques for creating alternate views
that transcend 1o higher abstraction lev-
cls. There is debate in the software com-
munity as 10 how completely the process
can be automated. Clearly, expertsystem
technology will playa major role in achiev-
ing the full potental of generating high-
level abstractions.

e Facilitate reuse. A significant issuc in
the movement toward software reusabiluty
is the large body of exisung sofiware as
sets. Reverse engineering can help detect
candidates for reusable software compo-
nents from present systems.

IEEE Software

Economics

The cost of understanding software,
while rarely seen as a direct cost, is none-
theless very real. It is manifested in the
time required to comprehend software,
which includes the time lost to misunder-
standing. By reducing the time required
to grasp the essence of software artifacts in
each life<cycle phase, reverse engineering
may greatly reduce the overall cost of soft-
ware.

In commenting on this article, Walt
Scacchi of the University of Southrern Cal-
ifornia made the following important ob-
servations: “Many claim that conventional
software maintenance pracices account
for 50 :1 90 percent of total life<cycle costs.
Software reverse-engineering tech-
nologies are targeted Lo the problems that
give rise to such a disproportonate distri-
bution of software costs. Thus, if reverse
engineering succeeds, the total system ex-
pense may be reduced/mitigated, or
greater value may be added to current el
forts, both of which represent desirable
outcomes, especially if one quantifies the
level of dollarsspent. Reverse engineenng
may need to only realize a small impact Lo
generate sizable savings.”

Scacchi also pointed out that “software

References

1. M.G. Rekofl)r, "On Reverse Engrineening,”
[EEE Trans. Systems, Man, and Cybernetics,
March-April 1985, pp. 244-252.

2. TJ. Byggersudl, “Design Recovery for Main-
tenance and Reuse,” (omputer, July 1989,
pp. 3649,

3. *Applicavon Reengineering,” Guide Pub.
GPP-208, Guide Int’I Corp., Chicago, 1989.

forward engineering and reverse engi-
neering are not separate concerns, and
thus should be viewed as opportunity for
convergence and complement, as well as
an expansion of the repertoire of wols
and techniques that should be available 10
the modern software engineer. 1, for one,
believe that the next generation of soft-
ware-engineering technologies will be ap-
plicable in both the forward and reverse
directions. Such a view also may therefore
imply yet another channel for getting ad-
vanced software-environment/CASE
techinologies into more people’s hands —
sell them on reverse engineening (based
on current software-maintenance cost
patterns) as a way to then introduce better
forward engineering tools and tech-
niques.”

¢ have tried to provide a frame-

work for examining reverse-en-
gincering technologies by syn-

thesizing the basic definitions of related
terms and identifying common objecuves.
Reverse engincering is rapidly becom-
ing a recognized and important compo-
nent of future CASE environments. Be-
cause the entre life cycle is nawrally an
iterative activity, reverse-engineering tools

Elliot J. Chikofsky is dircctor of research and
technology at tndex Technology Corp. and a
lecturer in industrial engineering and inlor-
mation systems at Northeastern University.

Chikofsky ts an associate editor-in-chief of
IEFF Software, vice chairman for membership
of the Computer Society’s Technical Commit-
e on Software Engineering, president of the
International Workshop on CASE, and author
of a book on CASEn the Technology Series for
IEEE Computer Society Press. He is a senior
member of the IEEE.

Address questions about this article 1o Chikofsky at Index Technology. | Main St, Cambndge
Engineering Dept, 107 Dunstan Hall, Auburn University, Auburn, AL 36849.

January 1930

can provide a major link in the overall
process of development and mainte-
nance. As these tools mature, they will be
applied to artfacts in all phases of the hfe
cvcle. Thevwill be a permanent part of the
process, ultimately used to verifv all com-
pleted systems against their intended de-
signs, even with fully automated genera-
uon.

Reverse engineering, used with evohing
software development technologics, will
provide significant mcremental enhiances

ments 1o our productivity. X

Acknowledgments

We acknowledge the special contnbutons of
these individuals 10 the synthess of thes tine
nomy and the ratonalizivon of conthicung ter-
minology: Walt Scacchi of the University of
Southern California, Norim Schncidewind of
the Naval Posigraduate School, Jim Fulion of
Bocing Computer Services, Bob Amold of the
Software Productivity Consortium, Shawn
Bohner of Contel Technology Center, Pinlip
Hausler and Mark Pleszkoch of IBM and the
University of Maryland at Balimore County,
Linore Cleveland of 1BM, Diane Mulirs of
Mitre, Paul Oman of University of Idahao, john
Munson and Norman Wiide of the Universy
of West Florida, and the parucipants in dy-
rected discussions at the 1989 Conlerence on
Software Maintenance and the 1988 and 19%9
International Workshops on CASE.

3
ui:‘. ala, <
James H. Cross 11 is an assistant professor ol
compulter science and cngineering at Aubuin
University. His rescarch interests include de-
sign methodology, development environ-
ments, reverse engineering, visualizauon, and
testing. He is secretary of thw IEEE Computer
Society Publicavons Board.

Cross received 1 BS to inathematcs from the
University of Houston, an MS in mathenusucs
from Sam Houston State University, and a PhDD
in computer science from Texas A&M Uni-
versity. He is a member of the ACM and [EEE
Computer Socicty.

, MA 02142 or 1o Cross at Computer Science and

17
ORIGINAL PAGE IS
OF POOR QUALITY

Appendix B

"Control Structure Diagrams For Ada"
by

James H. Cross II
Auburn University

Sallie V. Sheppard
Texas A&M University

W. Homer Carlisle
Auburn University

Published in Journal of Pascal, Ada & Modula 2, Vol. 9, No. 5, Sep./Oct. 1990, 26-33.

Control Structure

Diagrams for Ada

James H. Cross II
Sallie V. Sheppard
W. Homer Carlisle

dvances in hardware, particularly high-density bit-
mapped monitors, have led to a renewed interest
in graphical representation of software. Much of the
research activity in the area of software visualization
and computer-aided software engineering (CASE) tools
has focused on architectural-level charts and diagrams.

However, the complex nature of the control constructs
and the subsequent control flow defined by program
design languages (PDLs), which are based on pro-
gramming languages such as Ada, Pascal, and Mod-
ula-2, make detailed design specifications attractive
candidates for graphical representation. And, since the
source code itself will be read many times during the
course of initial development, testing, and maintenance,
it too should benefit from the use of an appropriate
graphical notation.

The control structure diagram (CSD) is a notation
intended specifically for the graphical representation
of detailed designs, as well as actual source code. The
primary purpose of the CSD is to reduce the time re-
quired to comprehend software by clearly depicting
the control constructs and control flow at all relevant
levels of abstraction, whether at the design level or

within the source code itself. The CSD is a natural ex-
tension to existing architectural graphical represen-
tations such as data flow diagrams, structure charts,
and Booch diagrams.

The CSD, initially created for Pascal/PDLI1], has been
extended significantly so that the graphical constructs
of the CSD map directly to the constructs of Ada. The
rich set of control constructs in Ada (e.g., task ren-
dezvous) and the wide acceptance of Ada/PDL by the
software engineering community as a detailed design
language made Ada a natural choice for the basis of a
graphical notation. A major objective in the philosophy
that guided the development of the CSD was that the
graphical constructs supplement the code and PDL
without disrupting their familiar appearance. That is,
the CSD should appear to be a natural extension to the
Ada constructs and, similarly, the Ada source code
should appear to be a natural extension of the diagram.
This has resulted in a concise, compact graphical no-
tation that attempts to combine the best features of
previous diagrams with those of well-established PDLs.
A CSD generator was developed to automate the pro-
cess of producing the CSD from Ada source code.

Control Structure Diagram for Ada

Background

Graphical representations have long been recognized
as having an important impact in communicating from
the perspective of both the “writer” and the “reader.”
For software, this includes communicating require-
ments between users and designers and communicat-
ing design specifications between designers and
implementors. However, there are additional areas
where the potential of graphical notations have not
been fully exploited. These include communicating the
semantics of the actual implementation represented
by the source code to personnel for the purposes of test-
ing and maintenance, each of which are major resource
sinks in the software lifecycle. In particular, Shelby et
al. [2] found that code reading was the most cost-ef-
fective method of detecting errors during the verifica-

The CSD for Ada is supported
by an operational prototype
graphical prettyprinter that
accepts Ada source code as
input and generates the CSD
in a manner similar to text-
based prettyprinters.

tion process when compared to functional and
structural testing. Standish (3] reported that program
understanding may represent as much as 90% of the
cost of maintenance. Hence, improved comprehension
efficiency resulting from the integration of graphical
notations and source code could have a significant im-
pact on the overall cost of software production.

Since the flowchart was introduced in the mid-50s, nu-
merous notations for representing algorithms have been
proposed and utilized. Several authors have published
notable books and papers that address the details of many
of these [4-6]. Tripp (5}, for example, describes eighteen
distinct notations that have been introduced since 1977,
and Aoyama et al. [6] describe the popular diagrams used
in Japan. In‘general, these diagrams have been strongly
influenced by structured programming and thus contain
control constructs for sequence, selection, and iteration.
In addition, several contain explicit EXIT structures to
allow single entry/multiple exit control flow through a
block of code, as well as PARALLEL or concurrency con-
structs. However, none of the diagrams cited explicitly
contains all of the control constructs found in Ada.

28 JOURNAL OF PASCAL, ADA & MODULA-2

ta2CEDING PAGE BLANK NOT FILMED

Graphical notations for representing software at the
algorithmic level have been neglected, for the most
par. by business and industry in the United Statesin
favor of nongraphical PDLs. A lack of automated sup-
port and the results of several studies conducted in the
1970s that found no significant difference in the com-
prehension of algorithms represented by flowcharts
and pseudocode [7) have been major factors in this un-
derutilization. However, automation is now available
in the form of numerous CASE tools, and recent em-
pirical studies reported by Aoyama (6] and Scanlan {8]
have concluded that graphical notations may indeed
improve the comprehensibility and overall productiv-
ity of software. Scanlan’s study involved a well-con-
trolled experiment in which deeply nested if-then-clse
constructs, represented in structured flowcharts and
pseudocode, were rcad by intermediate-level students.
Scores for the flowchart were significantly higher than
those of the PDL. The statistical studies reported by
Aoyama et al. involved several tree-structured dia-
grams (e.g., PAD, YACC 11, and SPD) widely used in
Japan that, in combination with their environments,
have led to significant gains in productivity. The re-
sults of these recent studies suggest that the usc of a
graphical notation with appropriate automated sup-
port for Ada/PDL and Ada should provide significant
increases in productivity over current nongraphical
approaches.

Control Structure Diagram

Figure 1(a) contains an Ada task body CONTROLLER
adapted from [9] that loops through a priority list at-
tempting to accept selectively a REQUEST with prior-
ity P. Upon on acceptance, some action is taken,
followed by an exit from the priority list loop to restart
the loop with the first priority. In typical Ada task
fashion, the priority list loop is contained in an outer
infinite loop. This short example contains two threads
of control: the rendezvous, which enters and exists at
the accept statement, and the thread within the task
body. In addition, the priority list loop contains two
exits: the normal exit at the beginning of the loop when
the priority list has been exhausted, and an explicit
exit invoked within the select statement. While the
concurrency and multiple exits are useful in modeling
the solution, they do increase the effort required of the
reader to comprehend the code.

Figure 1(b) shows the corresponding CSD generated
by the graphical prettyprinter. In this example, the in-
tuitive graphical constructs of the CSD clearly depict
the point of rendezvous, the two nested loops, the se-

continued on page 32

lect statement guarding the accept statement for the
task, the unconditional exit from the inner loop, and
the overall control flow of the task. When reading the
code without the diagram, as shown in Figure 1(a), the
control constructs and control paths are much less vis-
ible although the same structural and control infor-
mation is available. As additional levels of nesting and
increased physical separation of sequential components
occur in code, the visibility of control constructs and
control paths becomes increasingly obscure, and the ef-
fort required of the reader dramatically increases in
the absence of the CSD.

Now that the CSD has been briefly introduced, the
various CSD constructs for Ada are presented in Fig-
ure 2. Since the CSD is designed to supplement the se-
mantics of the underlying Ada, each of the CSD
constructs is self-explanatory and are presented with-
out further description.

Automated Support — The CSD
Graphical Prettyprinter

Automated support is a requirement, at least in the
in professional ranks, for widespread utilization of
any graphical representation. Without automated
support, diagrams are difficult to construct and main-
tain from the standpoint of “living” formal documen-
tation, although software practitioners may use
several types of diagrams informally during design

B

task CONTROLLER 1is

entry REQUEST (PRIORITY} (D:DATA) :
end;

task body CONTROLLER is

begin
loop
for P in PRIORITY loop
select

accept REQUEST (P) (D:DATA) do

ACTION(D) ;

[

I

j end; |
exit:

i

|

| else

i null: ‘

end select;
end loop.
end loop:
end CONTROLLER;

; Figure 1(a). Ada source code for task CONTROLLEK

and even implementation. Automated support comes
in many forms, ranging from general-purpose “draw-
ing aids” to automatic generation and maintenance
based on changes to source code. The CSD for Ada 1s
currently supported by an operational prototype
graphical prettyprinter that accepts Ada source code
as input and generates the CSD in a manner similar
to text-based prettyprinters. The prototype was im-
plemented under DEC’s VAX VMS using a scanner/
parser generator and an Ada grammar. The user in-
terface was built using DEC's VAX Curses, and to pro-

The potential of the CSD LS
best realized during detailed
design, implementation,
verification, and maintenance.

vide the user with interactive viewing of the CSD, a
special version of DEC's EVE editor was generated.
Custom fonts for the CSD graphics characters were
built for both the VT220 terminal and the HP Laser
Jet printer. Using font-oriented graphics characters
rather than bit-mapped images provided for a high

degree of efficiency in generating the diagrams.
continued on page 32

—_—

/task CONTROLLER 1s

entry REQUEST(PRIORITY) (D:DATA).
end;

—_—
/Lask body CONTROLLER is
AR

begin
—{] loop
}——’tor P in PRIORITY loop
select

;
o

yaccept REQUEST (P) (D:DATA} do

F ACTION(D):
end;

exit;

else
_}—— null;

end select;
end l}oop: l
|
|
i
.

Lend loop;
end CONTROLLER:

Figure 1(b). Control structure diagram of Ada svurce code for

task CONTROLLER

SEPTEMBER/OCTOBER 1990

ORIGINAL PAGE IS
OF POOR QUALITY

Control Structure Diagram for Ada

~- PROCEDURE

procedure X is

-- PACKAGE
—_——
package Y is

procedure 2.
function 2 return
Lend Y;
-- SEQUENCE
S:
S;
S;
S

ITT1

SELECTION
— S:
if C then
S:
S;

when C2 =>

S
b
end case;
— S
-- FOR
I— S
for F in R loop
S;
S
S:
end loop:
-— Su
-- WHILE
— S

while C loop

S:
S:
S:

end loop.

— S;

-- INFINITE LOOP
! — 5.
loop
S;
S:
S:
end loop:

— 5

Boolean

LOOP EXIT
b— S:
loop
S:
exit when C;
S;
|leng loop:
t— S

BLOCK
— begin

i

| —
S:
S:
end;

— S

BLOCK WITH DECLARATIONS
b— S/
declare

C : INTEGER;
begin

S:

S:
end;
b— S

-- GO TO

f— s:

— <<L>>

«

S;
S;
goto L;

-- RAISE

b— S

p— S

4—— ralse Err;

Figure 2. Control structure diagram constructs for Ada.

- EXCEPTION HANDLER

b— S
— 5:

b— S;

exception

i

when Errl =>
S:

_rg\

when Err2 =>
S;

;%

when Err3 =>
S:

_é

end;

- TASK SPECIFICATION

ftask Y

—_——
Z-/r.ask body Y is

- RENDEZVOUS (RECEIVER)

b— 5

—
l—raccept C do

-- TERMINATE ALTERNATIVE

S:
select

%
\—/accept F do

[—

td

L
end select:

b— s

-- SELECT

S;
select
—

d

end select:

-- GUARDED SELECT
S:
select
when C1 =>

end select;

-- ABORT

30 JOURNAL OF PASCAL, ADA & MODULA-2

RENAL PAGE IS
CF POOR (UALITY

Control Structure Diagrams for Ada

The prototype is currently being ported to the Sun-4
workstation under UNIX and X Windows, where en-
hancements will include an option to collapse the diagram
around any control constructs and an option to generate
an intermediate level architectural diagram that indicates
control structure among subprograms and tasks.

Conclusions and Directions

A new graphical tool that maps directly to Ada was for-
mally defined and automated. The CSD offers advantages
over previously available diagrams in that it combines the
best features of PDL and code with simple intuitive graphu-
cal constructs. The potential of the CSD can be best realized
during detailed design, implementation, verification, and
maintenance. The CSD can be used as a natural extension
to popular architectural-level representations such as data
flow diagrams, Booch diagrams, and structure charts.

Our current reverse engineering project, GRASP/Ada
(10}, is focused on the generation of multilevel and
multiview graphical representations from Ada source
code. As indicated in GRASP/Ada overview shown in
Figure 3, the CSD represents the code/PDL level dia-
gram generated by the system. Our present efforts
are concentrated on the extraction of architectural-

and system-level diagrams such as structure charts.
Booch diagrams, and data flow diagrams. The reverse
engineering of graphical representations is destined
to become an integral component of CASE tools, which
until recently have focused on forward engineering.
The development of tools that provide for Interactive
automatic updating of charts and diagrams will serve
to improve the overall comprehensibility of software
and, as a result, improve reliability and reduce the

cost of software.

The reverse engineering of
graphical representations s
destined to become an
integral component of CASE
tools, which until recently
have focused on forward
engineering.

Phase 3

P Diagrams

hase 1 B

PDL/
Code
Diagrams
Code

packaye cpLyx 1%
Lype xmeyz.
procedure grzlurpy

CsSD

proceautre sxadr;
fynclion hyperblua:

erc cplyx;

package DoAYy CHlyx IS

eotyn;

| Figure 3. Overview of the GRASP/Ada reverse engineering project.

System
Diagrams

Architectural

Structure Charts

L]
1L

]

32 JOURNAL OF PASCAL. ADA & MODULA-2

FRECEDING PAGE BLANK NOT FILMED

ORIGINAL PAGE |S
OF POOR QUALITY

Acknowledgments

This research was supported, in part, by a grant from
George C. Marshall Space Flight Center, NASA/MSFC.
AL 35821. Richard Davis, Charles F. May, Kelly I. Mor-
rison, Timothy Plunkett, Darren Tola, K.C. Waddel,
and others made valuable contributions to this project.

References

1. J.H. Cross and S.V. Sheppard, The Control Structure Diagram:
An Automated Graphical Representation For Software, Proceed-
ings of the 21st Hawaii International Conference on Systems Sci-
ences (Kailui-Kona, HA, Jan. 5-8). IEEE Computer Society Press,
Washington, DC, 1988, Vol. 2, pp. 446—454.

2. R. Shelby et al.,, A Comparison of Software Verification Tech-
niques, NASA Software Engineering Laboratory Series (SEL-85-
001), Goddard Space Flight Center, Greenbelt, MD, 1985.

3. T. Standish, An Essay On Software Reuse, IEEE Transactions
on Software Engineering, SE-10, (9), 494497, 1985.

4. J. Martin and C. McClure, Diagramming Techniques for Analysts
and Programmers, Prentice-Hall, Englewood Cliffs, NJ, 1985.

5. L.L. Tripp., Survey of Graphical Notations For Program Design
— An Update, Software Engineering Notes, 13(4), 39-44, 1988.

6. M. Aoyama et al., Design Specification in Japan: Tree-Structured
Charts, IEEE Software, 31-37, 1989.

7 B. Shneiderman et al., Experimental Investigations of the Util-
ity of Detailed Flowcharts in Programming, Communications of
the ACM, No. 20, 373-381, 1977.

8 D.A. Scanlan, Structured Flowcharts Outperform Pseudocode:
An Experimental Comparison, JEEE Software, 28-36, 1989.

9. J.G.P. Barnes, Programming in Ada, Second Edition, Addison-
Wesley Publishing Co., Menlo Park, CA, 1984.

10.J.H. Cross, GRASP/Ada: Graphical Representations of Algorithms,
Structures and Processes for Ada, Technical Report (NASA-NCCS-
14), Auburn University, December 1989.

James H. Cross II is an Assistant Professor of Computer Sci-
ence and Engineering at Auburn University, Auburn, AL. His re-
search interests include design methodology, development
environmenls, reverse engineering and maintenance, visualization,
and testing. He received a B.S. degrec from the University of Hous-
ton, an M.S. degree from Sam Houston State University, and @
Ph.D. from Texas A&M University.

Sallie V. Sheppard is the Associate Provost for Undergraduate
Studies and Professor of Computer Science at Texas A&M University,
College Station, TX. She received B.A.and M.S. degrees from Texas
A&M University and a Ph.D. from the University of Pittsburgh. Her
research interests include programming languages and simulation.

W. Homer Carlisle is an Assistant Professor of Computer Sci-
ence and Engineering al Auburn University, Auburn, AL. He re-
ceived B.A, M.A., and Ph.D. degrees from Emery University., His
research interests include programming languages and parallel

processing.

SEPTEMBER/OCTOBER 1390 33

Appendix C

Extended Examples

The examples in this Appendix were extracted from a set of Ada source code files
provided by NASA to test the CSD generator. These examples were used in Section 5 to
illustrate the User Interface.

*** GQRASP/ADA V1.0 *** File: aerodap.a.csd Page:

with LEVEL_A_CONSTANTS;

use LEVEL_A_CONSTANTS;

with DATA_TYPES;

use DATA_TYPES;

with FSW_POOL;

use FSW_POOL;

with IL_POOL;

use IL_POOL;

with SIM_POOL;

use SIM_POOL;

with MATH_PACKAGE;

use MATH_PACKAGE:

with QUATERNION_OPERATIONS;

use QUATERNION_OPERATIONS;

with DOUBLE_PRECISION_MATRIX_OPERATIONS;
use DOUBLE_PRECISION_MATRIX_OPERATIONS;
with SINGLE_PRECISION_MATRIX_OPERATIONS;
use SINGLE_PRECISION_MATRIX_OPERATIONS;

{package body AERO_DAP_PACKAGE is

FIRST_PASS : BOOLEAN_32 := TRUE;

-- FIRST PASS FLAG --

TRIM_ERROR_L : SCALAR_SINGLE := 0.0;

KQ_RCS : INTEGER := 0;
KR_RCS : INTEGER := 0;
ALPHA_DAP : SCALAR_SINGLE := 0.0;

-- THIS NEXT SECTION OF VARIABLES HAS BEEN ADDED TO THIS PORTION OF --
-- OF THE PACKAGE IN ORDER TO PROVIDE A DUMP OF THESE VARIABLES, --
-— NOT BECAUSE THEY NEED ‘MEMORY' IN THE SENSE THAT THEIR VALUES --
-- MUST BE REMEMBERED FROM INVOCATION TO INVOCATION OF PROCEDURE --
-- AERO_DAP. CONSEQUENTLY, WHEN THE FLIGHT SOFTWARE IS FULLY --
—-- CHECKED OUT, THESE DECLARATIONS CAN BE MOVED TO APPEAR AS LOCAL --
-- DECLARATIONS IN PROCEDURE AERO-DAP --

BETA_DAP : SCALAR_SINGLE := 0.0;

CALPHA : SCALAR_SINGLE := 0.0;

PHI_DAP : SCALAR_SINGLE := 0.0;

SALPHA : SCALAR_SINGLE := 0.0;

BETA_FCS : SCALAR_SINGLE := 0.0;
~- BETA FILTER VARIABLES --

P_FCS SCALAR_SINGLE := 0.0;

*** GRASP/ADA V1.0 *** File: aerodap.a.csd Page:

Q_FCS : SCALAR_SINGLE :=
R_FCS : SCALAR_SINGLE :=
PHI_ERROR : SCALAR_SINGLE

oo

BANK_RATE_CMD : SCALAR_SINGLE
BETA_RATE_CMD : SCALAR_SINGLE
DP_CMD : SCALAR_SINGLE := 0.0;

[Nen)
oo

~e o~

i"won

DQ_CMD : SCALAR_SINGLE := 0.0;
DR_CMD : SCALAR_SINGLE := 0.0;
P_CMD : SCALAR_SINGLE := 0.0;

P_ERROR : SCALAR_SINGLE := 0.0;
ALPHA_TRIM_CMD : SCALAR_SINGLE := 0.0;

ALPHA_TRIM_RATE : SCALAR_SINGLE := 0.0;
ALPH2A_TRIM_ERROR : SCALAR_SINGLE := 0.0;
ALPHA_TRIM ERROR_L : SCALAR_SINGLE := 0.0;

O_CMD : SCALAR_SINGLE := 0.0;
O_ERROR : SCALAR_SINGLE := 0.0;
R_CMD : SCALAR_SINGLE := 0.0;

-- YAW CHANNEL VARIABLES --
R_ERROR : SCALAR_SINGLE := 0.0;
DP1 : SCALAR_SINGLE := 0.0;

i DP2 : SCALAR_SINGLE := 0.0;
‘ DOl : SCALAR_SINGLE := 0.0;
DQ2 : SCALAR_SINGLE := 0.0;
DQ3 : SCALAR_SINGLE := 0.0;
DO4 : SCALAR_SINGLE := 0.0;
DQO5 : SCALAR_SINGLE := 0.0;
DO6 : SCALAR_SINGLE := 0.0;
DR1 : SCALAR_SINGLE := 0.0;
DR2 : SCALAR_SINGLE := 0.0;
DR3 : SCALAR_SINGLE := 0.0;
DR4 : SCALAR_SINGLE := 0.0;
DRS : SCALAR_SINGLE := 0.0;
DR6 : SCALAR_SINGLE := 0.0;

-- USE A MATH PACKAGE TAILORED TO PROVIDE THE PRECISION WE NEED
-- FOR THIS APPLICATION

use SINGLE_PRECISION_MATRIX_OPERATIONS.REAL_MATH_LIB;

use DOUBLE_PRECISION_MATRIX_OPERATIONS.REAL_MATH_LIB;
-- THE FOLLOWING PACKAGES CONTAIN PROCEDURES THAT ARE CALLED --
-- BY procedure AERO_DAP. THEY ARE POSITIONED EXTERNAL TO --
-- PROCEDURE AERO_DAP SO THAT THEIR VARIABLES WILL EXIST --
-- BEYOND THE TIME WHEN THE PROCEDURE IS EXECUTING --

package BETA_FILTER_PACKAGE is
—

%* GRASP/ADA V1.0 * File: aerodap.a.csd

procedure BETA_FILTER;

Lend BETA_FILTER_PACKAGE;

package AERO_ANGLE_EXTRACT_PACKAGE is

procedure AERO_ANGLE_EXTRACT;

Llend AERO_ANGLE_EXTRACT_PACKAGE;

ipackage TRANS_DELAY_ COMP_PACKAGE is

procedure TRANS_DELAY_COMP;

Lend TRANS_DELAY_COMP_PACKAGE;

package STAB_AXES_CMD_PACKAGE is

procedure STAB_AXES_CMD;

lend STAB_AXES_CMD_PACKAGE;

'package JET_SELECT_LOGIC_PACKAGE is

i
{

procedure JET_SELECT_LOGIC;

end JET_SELECT_LOGIC_PACKAGE;

UNIT_X_VR : SINGLE_PRECISION_VECTOR3;
UNIT_Y_BODY_IN_INERTIAL : SINGLE_PRECISION_VECTOR3;
UNIT_Y_VR : SINGLE_PRECISION_VECTOR3;

UNIT_Z_DCL : SINGLE_PRECISION_VECTOR3;

UNIT_Z_VR : SINGLE_PRECISION_VECTOR3;

VREL_BODY : SINGLE_PRECISION_VECTOR3;

procedure AERO_ANGLE_EXTRACT is

| — BETA_DAP := SCALAR_SINGLE(ASIN(VREL_BODY(2) / V_REL_MAG) *
RAD_TO_DEG) ;

— UNIT_Y_BODY_IN_INERTIAL := Q_FORM({Q_B_TO_I,Y_BODY);

~— — UNIT_X_VR := DOUBLE_TO_SINGLE(UNIT(V_REL_NAV));

Page:

| ALPHA_DAP := ARCTAN2 (VREL_BODY(3),VREL_BODY (1)) * RAD_TO_DEG;

*** GRASP/ADA V1.0 *** File: aerodap.a.csd Page:

DOUBLE_TO_SINGLE (UNIT (CROSS_PRODUCT (UNIT_X_VR,UNIT_R)))

n

UNIT_Y_VR

UNIT_Z_VR UNIT (CROSS_PRODUCT (UNIT_X_VR,UNIT_Y_VR));

UNIT_Z_DCL, -UNIT_Z_VR)) * RAD_TO_DEG;

| -~ CALPHA := COS(ALPHA_DAP * DEG_TO_RAD);
| SALPHA := SIN(ALPHA_DAP * DEG_TO_RAD);
lend AERO_ANGLE_EXTRACT;

lend AERO_ANGLE_EXTRACT_PACKAGE;

package body BETA_FILTER_PACKAGE is

BETA_NODE : SCALAR_SINGLE := 0.0;
FIRST_PASS : BOOLEAN_32 := TRUE;

procedure BETA_FILTER is

F%&-if (OBAR_NAV > QBAR_BETA_FILT_ON) then
if FIRST_PASS then

BETA_FCS := 0.0;

FIRST_PASS := FALSE;

else
&%—— BETA_FCS := BETA_NODE * (K_BETA_FILT(1) * BETA_DAP) ;

end if;

BETA_FCS) ;

i
—else
. +—— BETA_FCS := BETA_DAP;

‘end if;
tend BETA_FILTER;
lend BETA_FILTER_PACKAGE;

package body TRANS_DELAY_COMP_PACKAGE is

-- LOCAL TO TRANS_DELAY_COMP - POSITIONED HERE FOR DUMP

ROLL_ACCEL : SCALAR_SINGLE := 0.0;
PITCH_ACCEL : SCALAR_SINGLE := 0.0;
YAW_ACCEL : SCALAR_SINGLE := 0.0;
procedure TRANS_DELAY_COMP is

ROLL_ACCEL := ROLL_ACCEL_NOM * SIGNUM(KP_RCS);
—— PITCH_ACCEL := PITCH_ACCEL_NOM * SIGNUM(KQ_RCS) ;

—— PHI_DAP := ARCTAN2 (DOT_PRODUCT (UNIT_Z_DCL,UNIT_Y_VR), DOT_PRODUCT

E . BETA_NODE := (K_BETA_FILT(2) * BETA_DAP) * (K_BETA_FILT(3} *

UNIT_Z_DCL := UNIT(CROSS_PRODUCT (UNIT_Y_BODY_IN_INERTIAL,UNIT_X_VR})

*** GRASP/ADA V1.0 *** File: aerodap.a.csd

YAW_ACCEL := YAW_ACCEL_NOM * SIGNUM(KR_RCS) ;

P_FCS := BODY_RATE(1l) > (ROLL_ACCEL * DT_AERODAP) ;
Q_FCS := BODY_RATE(2) * (PITCH_ACCEL * DT_AERODAP) ;
R_FCS := BODY_RATE(3) * (YAW_ACCEL * DT_AERODAP) ;

_end TRANS_DELAY_COMP;
lend TRANS_DELAY_COMP_PACKAGE;

package body STAB_AXES_CMD_PACKAGE is

PHI_DELTA : SCALAR_SINGLE := 0.0;

PHI_SHORTEST : SCALAR_SINGLE := 0.0;
N_180 : constant SCALAR_SINGLE :=
N_360 : constant SCALAR_SINGLE := 360.0;

procedure STAB_AXES_CMD is

\— PHI_DELTA := PHI_CMD - PHI_DAP;

—4Q-if INTEGER' (SIGN(PHI_CMD)) = INTEGER’ (SIGN(PHI_DAP)) then
| b— PHI_ERROR := PHI_DELTA;
L--else

if (abs (PHI_DELTA) >= N_180) then

L else
PHI_SHORTEST := PHI_DELTA;

: end if;
: —C%if (abs (PEI_SHORTEST) < DPHI_OVER_UNDER) then
: E——— PHI_ERROR := PHI_SHORTEST;

Lelse
’”*>Wif LIFT_DOWN_REVERSAL then
- gt—— PHI_ERROR := PHI_DELTA;

end if;

end if;

BANK_RATE_CMD_LIM) ;

+— BETA_RATE_CMD := K_BETA * BETA_FCS;
Lend STAB_AXES_CMD;

Lend STAB_AXES_CMD_PACKAGE;

package body JET_SELECT_LOGIC_PACKAGE is

-- LOCAL TO JET_SELECT_LOGIC --

PHI_SHORTEST := PHI_DELTA * (SIGN(PHI_DELTA) * N_360);

else
hk—— PHI_ERROR := PHI_DELTA * (SIGN(PHI_DELTA) * N_360);

. BANK_RATE_CMD := MIDVAL(-BANK_RATE_CMD_LIM, (K_PHI * PHI_ERROR),

*++ GRASP/ADA V1.0 ***

-- POSIT:ONED HERE FOR DUMP
SCALAR_SINGLE
SCALAR_SINGLE
SCALAR_SINGLE
INTEGER := 0;
INTEGER 0;
INTEGER := 0;

DP_SIGN

DQ_SIGN
DR_SIGN

> -

.
.

File:

KP_RCS_PAST
KQ_RCS_PAST
KR_RCS_PAST

INTEGER
INTEGER
INTEGER

procedure JET_SELECT_LOGIC

begin

-- JET LEVEL LOGIC --

| RCS_ON := (others=>OFF);

| DP_ABS := abs (DP_CMD);

- DO_ABS := abs (DQ_CMD);

| DR_ABS := abs (DR_CMD);

+— DP_SIGN := SIGN (DP_CMD) ;
DO_SIGN := SIGN(DQ_CMD);
DR_SIGN := SIGN(DR_CMD) ;

KP_RCS_PAST
KQ_RCS_PAST
KR_RCS_PAST

aerodap.a.csd

is

KP_RCS * DP_SIGN;
KQ_RCS * DQ_SIGN;
KR_RCS * DR_SIGN;

-—quf ((DP_ABS >= DP2)} or ((DP_ABS >= DPl) and
il then
gt—— KP_RCS := DP_SIGN;
— else
t—— KP_RCS := 0;
| end if;
- PITCH CHANNEL --
—(nif ((DQ_ABS >= DQ2) or else ((DQ_ABS >= DQI
} then
I KO_RCS := DQ_SIGN;
if ((DQ_ABS >= DQ4) or else ((DQ_ABS >=

>= 3})) then

KQ_RCS

end if;

helse
KQ_RCS

C;

2))) then
KQ_RCS := 2 * DQ_SIGN;
elsif ((DQ_ABS >= DQ6)

or else ((DQ_ABS

:= 3 * DQ_SIGN;

Page:

(KP_RCS_PAST >= 1)}))

and (KQ_RCS_PAST >= 1})

)

DQ3) and (KQ_RCS_PAST >=

>= DQ5) and (KQ_RCS_PAST

*++ GRASP/ADA V1.0 *** File: aerodap.a.csd Page:

—{»if ((DR_ABS >= DR2) or else ((DR_ABS »>= DR1) and (KR_RCS_PAST >= 1))
) then

L— KR_RCS := DR_SIGN;

if ((DR_ABS >= DR4) or else ((DR_ABS >
2))) then

KR_RCS := 2 * DR_SIGN;

DR3) and (KR_RCS_PAST »>=

elsif ((DR_ABS >= DR6) or else ((DR_ABS >= DR5) and (KR_RCS_PAST
>= 3))) then
KR_RCS := 3 * DR_SIGN;

L
end if;

_else
. — KR_RCS := 0;

(- if (KP_RCS /= 0) then
if (KP_RCS > 0) then

)
: RCS_ON(1) := ON;
: RCS_ON(2) := ON;

else
RCS_ON(3) = ON;
RCS_ON(4) := ON;
! end if;
hend if;

—(~if (KQ_RCS /= 0) then
—{hif (KQ_RCS > 0) then

if ({KQ_RCS = 1) or (KQ_RCS = 3)) then
RCS_CON(5) := ON;
end if;
if (KQ_RCS >= 2) then
; RCS_ON(9) := ON;
L
end if;
~:else
: if ((KQ_RCS = -1) or (KQ_RCS = -3)) then
S RCS_ON(6) := ON;
) al
- end if;
Onif (KQ_RCS <= -2) then
gt—— RCS_ON{10) := ON;
end if;

*** GRASP/ADA V1.0 *** File:
it

end if;

(KR_RCS /= 0) then
—{~ if (KR_RCS > 0) then
—~ if ((KR_RCS = 1) or
gt—- RCS_ON(7) := ON;

(KR_RCS

end if;
if (KR_RCS >= 2) then
RCS_ON(11l) := ON;

end if;
jelse
if

((KR_RCS =
RCS_ON(8)

-1) or
:= ON;

i | " end if;
1f (KR_RCS <= -2} then
t—— RCS ON(12) := ON;

i " end if;
i

_end if;

L
end if;
lend JET_SELECT_LOGIC;

' |-- IF (RCS_ONS(1:) = ON) and (RCS_ONS$(3

T RCS_ON$(1:),RCS_ON$(3:) = OFF;
- IF (RCS_ONS(2:) = ON) and (RCS ONS (4:)
- RCS ons RCS_ONS (= OFF;

Lend JET_SELECT_LOGIC_PACKAGE
IEITZLEEEEEZEE R EEE RS S LR S LR BRI RS B N "
use BETA_FILTER_PACKAGE;

use AERO_ANGLE_EXTRACT_PACKAGE;
use TRANS_DELAY_COMP_PACKAGE;
use STAB_AXES_CMD_PACKAGE;

use JET_SELECT_LOGIC_PACKAGE;

IETITEEZREEE R EERE SRR R E RS &R AR S L I J.

procedure AERO_DAP is

procedure AERO_DAP_INIT;

procedure BODY_AXES_CMD;

—

(KR_RCS

aerodap.a.csd

Page:

3)) then

-3)) then

+* GRASP/ADA V1.0 * File: aerodap.a.csd Page:

procedure BODY_AXES_CtiD is

l

P_CMD := (BANK_RATE_CMD * CALPHA) * (BETA_RATE_CMD * SALPHA);
P_ERROR := P_CMD - P_FCS;
DP_CMD := K_P * P_ERROR;

ALPHA_TRIM_CMD := ALPHA_CMD - TRIM_ERROR_L:

ALPHA_TRIM_ERROR := ALPHA TRIM_CMD - ALPHA_DAP;

ALPHA_TRIM_ERROR_L := MIDVAL -ALPHA_ERROR_LIM,ALPHA_TRIM_ERROR,
ALPHA_ERROR_LIM) ;

Q_CMD := K_ALPHA * ALPHA_TRIM_ERROR_L;

O_ERROR := Q_CMD - Q_FCS;

DQ_CMD := K_Q * Q_ERROR;

TRIM_ERROR_L TRIM_ERROR_L * (K_ALPHA_TRIM * Q_ERROR * DT_AERODAP)

TRIM_ERROR_L MIDVAL(—TRIM_ERROR_LIM,TRIM_ERROR_L,TRIM_ERROR_LIM)

R_CMD := (BETA_RATE_CMD * CALPHA) * (BANK_RATE_CMD * SALPHA);
R_ERROR := R_CMD - R_FCS;
DR_CMD := K_R * R_ERROR;

Lend BODY_AXES_CMD;

procedure AERO_DAP_INIT is

begin

(- if

DP1 := DP1_AERO;
DO1 := DQ1_AERO;
DR1 := DR1_AERO;
DP2 := DP2_AERO;
DO2 := DQ2_AERO;
DR2 := DR2_AERO;
DO3 := DQ3_AERO;
DR3 := DR3_AERO;
D04 := DQ4_AERO;
DR4 := DR4_AERO;
DOS := DQS_AERO;
DR5 := DRS_AERO;
DO6 := DQ6_AERO;
DR6 := DR6_AERO;

,_***********t****************__

-- BODY OF PROCEDURE AERO_DAP --

__****************************__

FIRST_PASS then

AERO_DAP_INIT;

*** GRASP/ADA V1.0 *** File: aerodap.a.csd Page: 10
;t—— FIRST_PASS := FALSE;
E end if;

— AERO_ANGLE_EXTRACT;
[BETA_FILTER;

—— TRANS_DELAY_COMP;
— STAB_AXES_CMD;

—— BODY_AXES_CMD;

— JET_SELECT_LOGIC;

—— ALPHA_EDIT := ALPHA_DAP;

— BANK_RATE_CMD_EDIT := BANK_RATE_CMD;
—— BETA_EDIT := BETA_DAP;

—— BETA_FCS_EDIT := BETA_FCS;

— BETA_RATE_CMD_EDIT := BETA_RATE_CMD;
—— PHI_EDIT := PHI_DAP;

—— PHI_ERROR_EDIT := PHI_ERROR;

—— BODY_RATE_FCS_EDIT(1) := P_
\— BODY_RATE_FCS_EDIT(Z2) := Q_FCS;
— BODY_RATE_FCS_EDIT(3 = ;

ATT_ERROR_EDIT(1) := PHI_ERROR;
DP_CMD_EDIT := DP_CMD;
P_ERROR_EDIT := P_ERROR;
PC_EDIT := P_CMD;

I ALPHA_ TRIM_CMD_EDIT := ALPHA_TRIM_CMD;

. ALPHA_TRIM_ERROR_EDIT := ALPHA_TRIM_ERROR;
| ALPHA_TRIM_RATE_EDIT := ALPHA_TRIM_RATE;
L ATT_ERROR_EDIT(2) := ALPHA_TRIM_ERROR_L;
—— DQ_CMD_EDIT := DQ_CMD;

—— Q_ERROR_EDIT := Q_ERROR;

—— QC_EDIT := Q_CMD;

l—— TRIM_ERROR_L_EDIT := TRIM_ERROR_L;

—— ATT_ERROR_EDIT(3) := -BETA_FCS;
—— DR_CMD_EDIT := DR_CMD;

*x% GRASP/ADA V1.0 *** File:

%—»R_ERROR_EDIT := R_ERROR;
| — RC_EDIT := R_CMD;

| KP_RCS_EDIT := KP_RCS:
I KQ_RCS_EDIT := ;
— KR_RCS_EDIT := KR_RCS;
lend AERO_DAP;

lend AERO_DAP_PACKAGE;

aerodap.a.csd

Page:

11

*** GRASP/ADA V1.0 *** File: bl553_c.a.csd Page:

with system;

use system;

with component_types;

use component_types;

with logical;

use logical;

with bl553_bc;

use bl553_bc;

with unchecked_conversion;

package body B1553_COMPONENT_DATA is

data: arr_64;
data_msg: arr_64;

! DATA_MSG2: ARR_64;
stat_arr: arrl;
msg_count: integer;

-- A_cmd: UNSIGNED_WORD;
-- A_cmdlbk: UNSIGNED_WORD;
-- A_stat: UNSIGNED_WORD;

msg_arr: arr_59_65;

nmsg: integer;

wdcount: arr_32;

bc_interrupt_status: unsigned_word := 16#75%;
-- package int_io is new INTEGER_IO(INTEGER) ;
-- use int_io;

procedure B1553_IMU_INTRP is

-- Message 1 --
-- Set up IMU 40 msec interrupt - Data Ready Signal --

—— bc_interrupt_status := unsigned_word(16#75%);
| _fwhile (short_and(bc_interrupt_status, 16#74%) /= 16#00004%) loop
— data_msg(l) := 16#0001#%;
-- Even and 0dd frame data --
— data_msg(2) := 16#1000%;
-- BIT 12 DATA READY SIGNAL - 40 MSEC --
L— data_msg(3) := 16%#0000#;

| be_store_msg(0,2,3,0,3,data_msg);

-- Data word - RT 2 Subadd 3 --
-- rcv 3 data words --

— BC_GO;

|| BC_INTERRUPT (bc_interrupt_status);

| end loop;
-- Wait for BC interrupt then --
-- change buffer --

-~ put (* bc_interrupt_status = *);
-- put(integer(bc_interrupt_status),4,16);
-- new_line;

lend B1553_IMU_INTRP;

-- end bc_interrupt_status loop --

—- Timeout /1553 format error; buffer overflow;--
-- loop test fail; status set --

-- End Message 1 --

***x GRASP/ADA V1.0 *** File: bl553_c.a.csd Page:

precedure B1553_IMU_INIT is

-- Message 2 --
-- Set up IMU Quaternion Initialization --

I bc_interrupt_status := unsigned_word (16#75#%) ;
| _fwhile (short_and(bc_interrupt_status, 16#744%) /= 16#0000#) loop
L data_msg(l) := 16#0001%;

-- Even and 0dd frame data --

- data_msg(2) := 16#1002%;

-- BIT 12 DATA READY SIGNAL, BIT 1 RESET --
-- QUATERNION TO (1,0,,0,0) -

| data_msg(3) := 16#0000%#;

| bc_store_msg(0,2,3,0,3,data_msg);

-- Data word - RT 2 Subadd 3 --
-- rcv 3 data words --

—— BC_GO;

| BC_INTERRUPT (bc_interrupt_status);

end loop;

-- Wait for BC interrupt then --

-- change buffer --

== put (* bec_interrupt_status = "*);

P == put (integer (bc_interrupt_status),4,16);
-- new_line;

lend B1553_IMU_INIT;

-- end bc_interrupt_status loop --

-- Timeout/1553 format error; buffer overflow;--
-- loop test fail; status set --

-- End Message 2 --

procedure READ_IMU_DATA(IMU_DATA: out ARR_32) is
begin
——— bc_interrupt_status := unsigned_word(16#75%) ;

| —fwhile (short_and(bc_interrupt_status, 16#74#) /= 16#0000#) loop

— bc_store_msg(0,2,2,1,32,data_msg);

-- Data word - Rt 2 Subaddr 2 --
-- xmit 32 data words -
-- EVEN Prame Data - Subaddr 2 --

— bc_go;

—— be_interrupt (bc_interrupt_status);

| end loop;

-- put (* bc_interrupt_status = ");

-— put(integer(bc_interrupt_status),4,16);
-- new_line;

*** QRASP/ADA V1.0 *** File: bl553_c.a.csd Page:

-- end bc_interrupt_status loop --
—- Timeout/1553 format error; buffer overflow;--
-- loop test fail; status set --
-- BC_status(A_cmd,A_cmdlbk,A_stat,l);
-- put (* A_cmd = "); put (integer (A_cmd), 4,16);
-- put (* A_cmdlbk = "); put(integer(A_cmdlbk),4,16);
- put (* A_stat = *); put (integer (B_stat),4,16);
-— new_line;
——J BC_get_msg (msg_arr);
-- msg_count := integer (msg_arr(1,1));
-- put (" Message count = “);
-- put(msg_count,4,16);
-- new_line;
- put (" Message = ") ;
-- new_line;
for i in 1..32 loop
%—— imu_data(i) := msg_arr(l,i + 1);
end loop;
Lend READ_IMU_DATA;

procedure THRUSTER_INIT is

begin
-- Clear thrusters in Message 2 --

— data_msg2 (1) := 16%#0000#;
- data_msg2(2) := 16%#0000%;
I data_msg2(3) := 16#0000%;
—- THRUSTERS INITIALIZED TC ALL OFF CONDITION ---=-----

—— bc_interrupt_status := unsigned_word (l6#75#%#) ;

| __rwhile (short_and(bc_interrupt_status,16#74%) / 16#0000#%#) loop

| bc_store_msg(0,3,2,0,3,data_msg2);

-- Data word - Rt 3 Subaddr 2 --
-- rcv 3 data words --

— bc_go;

L bc_interrupt (bc_interrupt_status);

 end loop;

Lend THRUSTER_INIT;

-- end bc_interrupt_status locp --

—- Timeout/1553 format error; buffer overflow;--
-- loop test fail; status set --

-- End Message 2 --

tend B1553_COMPONENT_DATA;

*** GRASP/ADA V1.0 *** File: io.a.csd Page:

package body INPUT_OUTPUT_PACKAGE is

use SCALAR_SINGLE_IO;
use SCALAR_DOUBLE_IO;

procedure PUT_LINE (X: SINGLE_PRECISION_VECTOR) 1is

begin
N for I in X'FIRST..X'LAST loop

l—~ PUT(X(I));

Jend loop;

—— NEW_LINE;

lend PUT_LINE;

procedure PUT_LINE (X: DOUBLE_PRECISION_VECTOR) 1s

begin
[for I in X'FIRST..X'LAST loop

PUT(X(I));

end loop;

- NEW_LINE;

lend PUT_LINE;

procedure PUT_LINE (MAT: SINGLE_PRECISION_MATRIX) is

‘begin
—{ for I in MAT'FIRST(1)..MAT'LAST(1l) loop
" for J in MAT’'FIRST(2)..MAT'LAST(2) loop

PUT (MAT(I,J));

end loop;

—— NEW_LINE;
L end loop:

— NEW_LINE;

lend PUT_LINE;

procedure PUT_LINE (MAT: DOUBLE_PRECISION_MATRIX) is

begin
. {for I in MAT'FIRST(1)..MAT'LAST(1) loop
. {for J in MAT’'FIRST(2)..MAT'LAST(2) loop

L PUT (MAT(I,J));

|
| end loop;

~— NEW_LINE;

| end loop;

*** GQRASP/ADA V1.0 *** File: jio.a.csd Page:

NEW_LINE;

end PUT_LINE;
end INPUT_OUTPUT_PACKAGE;

*** GRASP/ADA V1.0 *** File: predguid.a.csd

with LEVEL_A_CONSTANTS;

use LEVEL_A_CONSTANTS;

with DATA_TYPES;

use DATA_TYPES;

with FSW_POOL;

use FSW_POOL;

with IL_POOL;

use IL_POOL;

with TEXT_IO;

use TEXT_IO;

with INPUT_OUTPUT_PACKAGE;

use INPUT_OUTPUT_PACKAGE;

with MATHE_PACKAGE;

use MATH_PACKAGE;

with QUATERNION_OPERATIONS;

use QUATERNION_OPERATIONS;

with SINGLE_PRECISION_MATRIX_OPERATIONS;
use SINGLE_PRECISION_MATRIX_OPERATIONS;
with DOUBLE_PRECISION_MATRIX_OPERATIONS;
use DOUBLE_PRECISION_MATRIX_OPERATIONS;

:

package body PRED_GUID_PACKAGE 1is

APOGEE_EPSILON1 : SCALAR_SINGLE := 25.0;

APOGEE_EPSILON2 : SCALAR_SINGLE := 1.0;

BANK_MAX : SCALAR_SINGLE := 165.0;

BANK_MIN : SCALAR_SINGLE := 15.0;

CORRIDOR_MIN : constant SCALAR_SINGLE := 0.05;
CORRIDOR_V_MAX : constant SCALAR_SINGLE := 34_000.0;
CORRIDOR_V_MIN : constant SCALAR_SINGLE := 26500.0;
DELTA_PHI_MIN : SCALAR_SINGLE := 1.0;

DELTA_T_PRED : constant SCALAR_SINGLE := 2.0;
G_RUN_GUIDANCE : SCALAR_SINGLE := 0.075;
GUID_PASS_LIM : constant INTEGER := 10;
LIFT_INC_CAPTURE : SCALAR_SINGLE := 0.15;
LIFT_PERCENT_CAPTURE : SCALAR_SINGLE := 0.5;
MAX_NUMBER_RUNS : constant INTEGER := 5;
PHI_LIFT_DOWN : constant SCALAR_SINGLE := 45.0;

VI_LIFT_DOWN : constant SCALAR_SINGLE := 27500.0;
VI_MODEL_LIFT_DOWN : constant SCALAR_SINGLE := 27900.0;
COS_PHI_MAX : SCALAR_SINGLE := 0.0;

COS_PHI_MIN : SCALAR_SINGLE := 0.0;

GUID_PASS : INTEGER := 0;

INITIALIZE_GUIDANCE : BOOLEAN_32 := TRUE;
MODEL_LIFT_DOWN : BOOLEAN_32 := TRUE;

PHI_CMD_NS : SCALAR_SINGLE := 0.0;

SIGN_OF_BANK : SCALAR_SINGLE := 0.0;

FIRST_TIME_CALLED : BOOLEAN_32 := TRUE;

EARTH_POLE : DOUBLE_PRECISION_VECTOR3 := (others=>0.0);
EARTH_OMEGA : DOUBLE_PRECISION_VECTOR3 := (others=>0.0);
7ZERO : constant SCALAR_SINGLE := 0.0;

-- NUMERICAL CONSTANTS USED IN PACKAGE --
i-—- This is necessary because of the overloading of operator --

Page:

*** GRASP/ADA V1.0 *** File: predguid.a.csd Page:

-- symbols to allow mixed mode arithmetic between single- -
-- precision and double-precision variables. --

ONE_TENTH : constant SCALAR_SINGLE := 0.1;
ONE_HALF : constant SCALAR_SINGLE := 0.5;

ONE: constant SCALAR_SINGLE := 1.0;

TWO : constant SCALAR_SINGLE := 2.0;

THREE : constant SCALAR_SINGLE := 3.0;

FIVE : constant SCALAR_SINGLE := 5.0;

N25_000 : constant SCALAR_SINGLE := 25000.0;
N26_000 : constant SCALAR_SINGLE := 26000.0;
N27_000 : constant SCALAR_SINGLE := 27000.0;
N29_000 : <constant SCALAR_SINGLE := 29000.0;
N30_000 : constant SCALAR_SINGLE := 30000.0;
N33_850 : constant SCALAR_SINGLE := 33850.0;
N150_000 : constant SCALAR_SINGLE := 150_000.0;
N400_000 : constant SCALAR_SINGLE := 400_000.0;

use INPUT_OUTPUT_PACKAGE.INT_IO;
use INPUT_OUTPUT_PACKAGE.SCALAR_SINGLE_IO;

—- USE A MATH PACKAGE TAILORED TO PROVIDE THE PRECISION WE NEED --
-- FOR THIS APPLICATION --

use SINGLE_PRECISION_MATRIX_OPERATIONS.REAL_MATH_LIB;
use DOUBLE_PRECISION_MATRIX_OPERATIONS.REAL_MATH_LIB;

-- THE FOLLOWING PACKAGES CONTAIN PROCEDURES THAT ARE CALLED BY --
-- procedure PRED_GUID. THEY ARE POSITIONED EXTERNAL TO procedure --
~-- PRED_GUID SO THAT THEIR VARIABLES WILL EXIST BEYOND THE TIME --
-- WHEN THE PROCEDURE IS EXECUTING. --

package PC_SEQUENCER_PACKAGE is

procedure PC_SEQUENCER;

end PC_SEQUENCER_PACKAGE;

Ipackage LATERAL_CONTROL_PACKAGE is

procedure LATERAL_CONTROL;

Lend LATERAL_CONTROL_PACKAGE;
use PC_SEQUENCER_PACKAGE;
use LATERAL_CONTROL_PACKAGE;

__***__

function ALTITUDE (R: DOUBLE_PRECISION_VECTOR3) return SCALAR_DOUBLE is
L

x%* GRASP/ADA V1.0 * File: predguid.a.csd Page:

__*********'k***-_

RM : SCALAR_DOUBLE;

- RM := VECTOR_LENGTH (R) ;
€-— return (RM / EARTH_R - (ONE - EARTH_FLAT) / SQRT(ONE / ((ONE -
EARTH_FLAT)**2 - ONE) / (ONE / (DOT_PRODUCT((R / RM), EARTH_POLE)**2)

Y)Y

lend ALTITUDE;
-- BODIES OF PACKAGES SPECIFIED ABOVE

L L 2222 R R E R B KR A SR SRS IS

ek kT kTR

package body PC_SEQUENCER_PACKAGE 1is

APOGEE_BRACKET : array(l..2) of SCALAR_SINGLE;

APOGEE_EPSILON : SCALAR_SINGLE;

APOGEE_EXTRAPOLATE : array(l..2) of SCALAR_SINGLE;

APOGEE_PREDICTED : SCALAR_SINGLE;

BRACKETED : BOOLEAN_32;

COS_CAPT : SCALAR_SINGLE;

COS_BRACKET : array(l..2) of SCALAR_SINGLE;

COS_EXTRAPOLATE : array(l..2) of SCALAR_SINGLE;

COS_PHI_TRY : array(l..10) of SCALAR_SINGLE;

DELTA_APOGEE : SCALAR_SINGLE;

DELTA_PHI : SCALAR_SINGLE;

I : INTEGER;

INTEG_LOOP : INTEGER range 1l..4;

NUMBER_CAPT : INTEGER;

NUMBER_GOOD : INTEGER;

NUMBER_HIGH : INTEGER;

NUMBER_LOW : INTEGER;

PHI_TRY : SCALAR_SINGLE;

PHI_TRY_LAST : SCALAR_SINGLE;

PRED_CAPTURE : BOOLEAN_32;
-- LOCAL PROCEDURES CALLED BY procedure PC_SEQUENCER. --
-- APPEAR HERE IN PACKAGE FORMAT SO THAT VARIABLES WILL BE AVAILABLE --
-- FOR DUMPS AND SO THAT VARIABLE VALUES WILL EXIST BETWEEN INVOCATIONS --
-- OF THESE PROCEDURES BY procedure PC_SEQUENCER. --

package PREDICTOR_PACKAGE is

procedure PREDICTOR;

tend PREDICTOR_PACKAGE;

package CORRECTOR_PACKAGE is

procedure CORRECTOR;

Lend CORRECTOR_PACKAGE;
use PREDICTOR_PACKAGE;
use CORRECTOR_PACKAGE;

*** GRASP/ADA V1.0 *** File: predguid.a.csd Page:

__**************************************t**********t**********************

___***__

package body PREDICTOR_PACKAGE 1is

A_PRED : DOUBLE_PRECISION_VECTOR3;

ALT PRED : SCALAR_DOUBLE;

GAMMA_PRED : SCALAR_SINGLE;

LOD_PRED : SCALAR_SINGLE;

PHI_PRED : SCALAR_SINGLE;

R_PRED : DOUBLE_PRECISION_VECTOR3;

R_MAG_PRED : SCALAR_DOUBLE;

RDDOT_PRED : SCALAR_SINGLE;

RDOT_PRED : SCALAR_SINGLE;

T_PRED : SCALAR_DOUBLE;

V_MAG_PRED : SCALAR_DOUBLE;

V_PRED : DOUBLE_PRECISION_VECTORS3;
-- INTEGRATOR PROCEDURE CALLED BY procedure PREDICTOR. --
—- APPEARS HERE AS A PACKAGE SO THAT ITS VARIABLES WILL RETAIN --
—-- THEIR VALUES BETWEEN INVOCATIONS OF THE PROCEDURE BY PREDICTOR. --

package INTEGRATOR_PACKAGE is

pestEE

i procedure INTEGRATOR;

end INTEGRATOR_PACKAGE;

__**'k*********************************'k********************************

__**********t***********************************_-

package body INTEGRATOR_PACKAGE is

-——- <VARIABLES ARE DECLARED AND POSITIONED HERE SO THAT THEIR VALUE
--§ -- WILL EXIST FROM INVOCATION TO INVOCATION OF procedure INTEG

—RATOR == ——mecmmmmmm—mmmmm oo — oo o———so—eoos

ACCUM_ACCEL : DOUBLE_PRECISION_VECTOR3;
ACCUM_VEL : DOUBLE_PRECISION_VECTOR3;
ORIG_POS : DOUBLE_PRECISION_VECTOR3;
ORIG_VEL : DOUBLE_PRECISION_VECTOR3;

R T X LEEEE R RS B R

procedure INTEGRATOR is

BT TR E R YRR LR A D

begin

1 case INTEG_LOOP is

—_ib——qwhen 1 =>

ORIG_POS R_PRED;

ORIG_VEL V_PRED;

ACCUM_VEL := V_PRED;

ACCUM_ACCEL := A_PRED;

R_PRED := ORIG_POS * ONE_HALF * DELTA_T_PRED * V_PRED;
V_PRED := ORIG_VEL * ONE_HALF * DELTA_T_PRED * A_PRED;

nn

[TTTT

when 2 =>
; ACCUM_VEL := ACCUM_VEL * TWO * V_PRED;

*** GQRASP/ADA V1.0 *** File: predguid.a.csd Page:

| ACCUM_ACCEL := ACCUM_ACCEL * TWO * A_PRED;
| — R_PRED := ORIG_POS * ONE_HALF * DELTA_T_PRED * V_PRED;
| V_PRED := ORIG_VEL * ONE_HALF * DELTA_T_PRED * A_PRED;

r

>——then 3 =

ACCUM_VEL := ACCUM_VEL * TWO * V_PRED;
ACCUM_ACCEL := ACCUM_ACCEL * TWO * A_PRED;
R_PRED := ORIG_POS * DELTA_T_PRED * V_PRED;
V_PRED := ORIG_VEL * DELTA_T_PRED * A_PRED;

NERR

when 4 =>
R_PRED := ORIG_POS / (ACCUM_VEL + V_PRED) * DELTA_T_PRED
/ €.0;
V_PRED := ORIG_VEL / (ACCUM_ACCEL + A_PRED) *
DELTA_T_PRED / €.0;

»— when others =>
k:: INTEG_LOOP can only have values in the range 1..4
null;

end case;

Lend INTEGRATOR;

lend INTEGRATOR_PACKAGE;
use INTEGRATOR_PACKAGE;

__****************'k*__

procedure PREDICTOR is

T ETEEEE RS R AR A A

— R_PRED := R_NAV;

—— R_MAG_PRED := VECTOR_LENGTH (R_PRED) ;
| ALT_PRED := ALTITUDE(R_PRED);

— V_PRED := V_NAV;

— V_MAG_PRED := VECTOR_LENGTH (V_PRED) ;
| — PHI_PRED := PHI_TRY * SIGN_OF_BANK;
- T_PRED := T_GMT;
L LOD_PRED := CL_NAV / CD_NAV;
- PRED_CAPTURE := FALSE;

I for INDEX in 1..4 loop
| INTEG_LOOP := INDEX;
— declare
AERO_ACCEL : DOUBLE_PRECISION_VECTOR3;
ALT_NORM_PRED : SCALAR_SINGLE;
l 1 CPHI : SCALAR_SINGLE;
DRAG_ACCEL : SCALAR_SINGLE;
‘ GRAV_ACCEL : DOUBLE_PRECISION_VECTOR3;
| HS_NORM_PRED : SCALAR_SINGLE;
\ I_LAT : DOUBLE_PRECISION_VECTOR3;

I_LIFT : DOUBLE_PRECISION_VECTOR3;

I_VEL : DOUBLE_PRECISION_VECTOR3;

1 LIFT_ACCEL : SCALAR _SINGLE;
RHO_EST : SCALAR_SINGLE;

*** GRASP/ADA V1.0 *** File: predguid.a.csd Page:

RHO_NOM : SCALAR_SINGLE;

SPHI : SCALAR_SINGLE;

U_PRED : DOUBLE_PRECISION_VECTOR3;
V_REL_MAG_PRED : SCALAR_DOUBLE;
V_REL_PRED : DOUBLE_PRECISION_VECTOR3;
Z_PRED : SCALAR_DOUBLE;

- V_REL_PRED := V_PRED - CROSS_PRODUCT (EARTH_OMEGA, R_PRED)

- V_REL_MAG_PRED := VECTOR_LENGTH (V_REL_PRED) ;

L— ALT_NORM_PRED := SCALAR_SINGLE (ALT_PRED / H_REF);

| HS_NORM_PRED := (((C_HS(5) * ALT_NORM_PRED + C_HS(4)})
ALT_NORM_PRED + C_HS(3)) * ALT_NORM_PRED + C_HS(2}) *
ALT_NORM_PRED + C_HS(1):

. RHO_NOM := RHO_REF / EXP((ONE - ALT NORM_PRED) /
HS_NORM_PRED) ;

if MODEL_LIFT_DOWN = TRUE and V_MAG_PRED < VI_LIFT_DOWN
then
PHI_PRED := PHI_LIFT_DOWN * SIGN_OF_BANK;

end if;
| — CPHI := COS(PHI_PRED * DEG_TO_RAD) ;
| SPHI := SIN(PHI_PRED * DEG_TO_RAD) ;

. DRAG_ACCEL := SCALAR_SINGLE ((ONE_HALF * RHO_EST *
V_REL_MAG_PRED**2 * CD_NAV * S_REF) / MASS_NAV);

. LIFT_ACCEL := LOD_PRED * DRAG_ACCEL;

— I_VEL V_REL_PRED / V_REL_MAG_PRED;

I_LAT := UNIT (CROSS_PRODUCT (I_VEL, R_PRED));

I_LIFT := UNIT (CROSS_PRODUCT (I_LAT,I_VEL)) * CPHI *
I_LAT * SPHI;

| AERO_ACCEL := LIFT_ACCEL * I_LIFT * DRAG_ACCEL * I_VEL;

— U_ = R_PRED / R_MAG_PRED;

7 PRED := DOT_PRODUCT{(U_PRED, EARTH_POLE) ;

— := U_PRED * (THREE * EARTH_J2 / TWO) / (EARTH_R /
R_MAG_PRED)**2 * ((ONE * FIVE * Z_PRED**2) * U_PRED *
TWO * Z_PRED * EARTH_POLE);

L GRAV_ACCEL := - (EARTH_MU / R_MAG_PRED**2) * U_PRED;

% GRASP/ADA V1.0 * File: predguid.a.csd Page:

+— INTEGRATOR;

L — R_MAG_PRED := VECTOR_LENGTH (R_PRED) ;
—— V_MAG_PRED := VECTOR_LENGTH (V_PRED) ;

. ALT_PRED := ALTITUDE(R_PRED);

Lend;

Uend loop;

-- declare block

-- INDEX loop; INTEG_LOOP variable holds current value of INDEX

. T _PRED := T_PRED + DELTA_T_PRED;

— RDOT_PRED := SCALAR_SINGLE (DOT_PRCDUCT (V_PRED, R_PRED) /
R_MAG_PRED) ;

| . GAMMA_PRED := SCALAR_SINGLE (ASIN(RDOT_PRED / V_MAG_PRED)) ;

—— RDDOT_PRED := SCALAR_SINGLE (DOT_PRODUCT (A_PRED, R_PRED) /
R_MAG_PRED / (V_MAG_PRED * COS (GAMMA_PRED)) **2 / R_MAG_PRED

) !

—4>Lif ALT_PRED > N400_000 and then RDOT_PRED > ZERO then
S exit;

-- exit TIME_INCREMENT loop
end if;

~4&-if (RDDOT_PRED < ZERO and RDOT_PRED < ZERO) or ALT_PRED <
N150_000 then
| PRED_CAPTURE := TRUE;

‘end if;
—(n if PRED_CAPTURE = TRUE then
4+ | — exit;

-- exit TIME_INCREMENT loop
end if;

| end loop:;

-- TIME_INCREMENT loop

L else

- t——declare

x% GRASP/ADA V1.0 * File: predguid.a.csd Page:

ECCEN_PRED : SCALAR_SINGLE;

PARAMETER_PRED : SCALAR_SINGLE;
begin
—— PARAMETER_PRED := SCALAR_SINGLE((R_MAG_PRED * V_MAG_PRED *
COS (GAMMA_PRED)) **2 / EARTH_MU);
I— ECCEN_PRED := SCALAR_SINGLE (SQRT (ONE / PARAMETER_PRED / (
TWO / R_MAG_PRED / V_MAG_PRED**2 / EARTH_MU))) ;
L APOGEE_PREDICTED := SCALAR_SINGLE ((PARAMETER_PRED - (ONE -
ECCEN_PRED) - EARTH_R) * FT_TO_NM) ;

Lend;

-- declare block
end if;

lend PREDICTOR;

Lend PREDICTOR_PACKAGE;

__***-k***r**t***t*

__***_-

package body CORRECTOR_PACKAGE is

DELT : SCALAR_SINGLE;

RISE : SCALAR_SINGLE;

RUN : SCALAR_SINGLE;

SENSITIVITY : SCALAR_SINGLE;
TRY_METHOD : INTEGER range 1..6;

B E TR IR L EE LA RS A S

procedure CORRECTOR is

PR TEETEEE R ERE RS RS R

-—quf V_NAV_MAG > N33_850 then

i SENSITIVITY := 24000.0;

L

Helsif V_NAV_MAG > N30_000 then

—— SENSITIVITY := SCALAR_SINGLE(SCALAR_DOUBLE(G.3926) * V_NAV_MAG
- SCALAR_DOUBLE(188_700.0));

elsif V_NAV_MAG N29_000 then

>
| — SENSITIVITY := SCALAR_SINGLE(SCALAR_DOUBLE(I.49013) *
V_NAV_MAG - SCALAR_DOUBLE(41625.0));
“elsif V_NAV_MAG > N27_000 then
SENSITIVITY := SCALAR_SINGLE(SCALAR_DOUBLE(O.57892) *
V_NAV_MAG - SCALAR_DOUBLE(15200.0));
elsif V_NAV_MAG > N26_000 then
SENSITIVITY := SCALAR_SINGLE(SCALAR_DOUBLE(0.42596) *
V_NAV_MAG - SCALAR_DOUBLE(11070.0));
elsif V_NAV_MAG > N25_000 then
SENSITIVITY := 5.0;
end if;

% GRASP/ADA V1.0 * File: predguid.a.csd Page:

—- T is declared in PC_SEQUENCER_PACKAGE and is set equal
-- to RUN_NUMBER in RUN_NUMBER loop

if I = 1 then

TRY_METHOD := 1;

L else

'~Ao-if BRACKETED = TRUE then
if NUMBER_LOW /= 0 then

TRY_METHOD := 2;

i

else
fk—— TRY_METHOD := 3;

end if;

—else

ase MIDVAL(0,NUMBER_GOOD,2) is

- c
»——z%—lzien 1 =>
. TRY_METHOD := 5;

L

when 2 =>
TRY_METHOD :=6;

L
when others =>
TRY_METHOD := 4;

L
end case;

_end if;
end if;
| case TRY_METHOD is
Cﬁ—-when 1 =>
-- RUN LAST GUESS FROM PREVIOUS GUIDANCE CYCLE --
i —— COS_PHI_TRY (I) = COS(PHI_CMD * DEG_TO_RAD);
}——:when 2 =>

| RUN := COS_BRACKET(2) - COS_BRACKET(1);
. RISE := APOGEE_BRACKET(2) - APOGEE_BRACKET (1);
—4}Lif abs (RISE) < ONE_TENTH then

i RISE := ONE_TENTH * SIGN(RISE);

end if;
| DELT := APOGEE_TARGET - APOGEE_BRACKET(1);
I COS_PHI_TRY(I) := COS_BRACKET(1) / (DELT * RUN) / RISE;
»——when 3 =>

; -- INTERPOLATE A HIGH GUESS AND A CAPTURED GUESS --
} -- A % FROM HIGH GUESS -

| COS_PHI_TRY(I) := COS_BRACKET(1l) ~* (COS_CAPT - COS_BRACKET(
1)) * LIFT_PERCENT_CAPTURE;

-- MARCH OUT OF THE CAPTURE REGION --

*** GRASP/ADA V1.0 *** File: predguid.a.csd Page:
| COS_PHITRY (1) := COS_CAPT - LIFT_INC_CAPTURE;
}—;when 5 =>
T ERTRAPOLATE ONE GOOD GUESS USING A STORED SENSITIVITY --
e PRITRY (1) 1o COS_PHITRY(I - 1) / DELTA_APOGEE /
SENSITIVITY;

I— COS_PHI_TRY(I) := MIDVAL(COS_PHI_MIN,COS_PHI_TRY(I),COS_PHI_MAX);
— PHI_TRY := ACOS (COS_PHI_TRY(I)) * RAD_TOC_DEG;
{end CORRECTOR;

Lend CORRECTOR_PACKAGE;

R TEEEE R EEEE S E R R R G

—-- EXTRAPOLATE TWO HIGH GUESSES OR TWO LOW GUESSES --

-- TO TARGET APOGEE --

_ RUN := COS_EXTRAPOLATE(2) - COS_EXTRAPOLATE(1);

| RISE := APOGEE_EXTRAPOLATE(2) - APOGEE_EXTRAPOLATE (1) ;
if abs (RISE) < ONE_TENTH then

RISE := ONE_TENTH * SIGN(RISE);

end if;
\ DELT := APOGEE_TARGET - APOGEE_EXTRAPOLATE (1) ;

>— when others =>

-- TRY_METHOD can only have values from 1..6

f—— null;

end case;

procedure PC_SEQUENCER is

B TEEEEEE R R E R RS SR R

t—— COS_PHI_TRY(I) := COS_EXTRAPOLATE(1l) / (DELT * RUN) / RISE;

—— NUMBER_HIGH := 0;

—— NUMBER_LOW := 0;

—— NUMBER_CAPT := 0;

- NUMBER_GOOD := 0;

—— COS_PEI_TRY := (others=>SCALAR_SINGLE (T_INFINITY));

— COS_EXTRAPOLATE := (others=>SCALAR_SINGLE (T_INFINITY));
—— COS_BRACKET := (others=>SCALAR_SINGLE (T_INFINITY)) ;

APOGEE_BRACKET := (others=>SCALAR_SINGLE (T_INFINITY));
BRACKETED := FALSE;

for RUN_NUMBER in 1..MAX NUMBER_RUNS loop
I— I := RUN_NUMBER:;

%—— CORRECTOR;

i
1

APOGEE_EXTRAPOLATE := (others=>SCALAR_SINGLE (T_INFINITY)) ;

10

*** GRASP/ADA V1.0 ***

——4PREDICTOR;

.| PUT(* TRY#/PHI/APO = *);

—! PUT(I);

——J PUT(PEI_TRY);
| | PUT(APOGEE_PREDICTED)} ;

—- NEW_LINE;

—— NEW_LINE;

—On i f PRED_CAPTURE = TRUE then

[NUMBER_CAPT := NUMBER_CAPT + 1;
5[—~ COS_CAPT := COS_PHI_TRY(I);

File: predguid.a.csd

NUMBER_GOOD

COS_EXTRAPOL.
COS_EXTRAPOL.
APOGEE_EXTRA

APOGEE_EXTRAPOLATE (

:= NUMBER_GOOD + 1;

ATE(2) := COS_EXTRAPOLATE(1l);

ATE(1) := COS_PHI_TRY(I);

POLATE(2) := APOGEE_EXTRAPOLATE(1);
1) := APOGEE_PREDICTED;

| NUMBER_HIGH := NUMBER_HIGH + 1;

HOn it APOGEE_PREDICTED »>= APOGEE_TARGET then

- COS_BRACKET(1) := COS_PHI_TRY(I);
| APOGEE_BRACKET (1) := APOGEE_PREDICTED;

Page:

11

*** GRASP/ADA V1.0 *** File: predguid.a.csd Page: 12

NUMBER_LOW := NUMBER_LOW + 1;

COS_BRACKET(2) := COS_PHI_TRY (I);
APOGEE_BRACKET(2) := APOGEE_PREDICTED;
end if;
“end if;

—{»if NUMBER_HIGH > 0 and (NUMBER_LOW > 0 or NUMBER_CAPT > 0) then

. DELTA_PHI := abs (PHI_TRY - PHI_TRY_LAST);
L PHI_TRY_LAST := PHI_TRY;

if V_NAV_MAG > N30_000 then
APOGEE_EPSILON := APOGEE_EPSILON1;

—else
fk—— APOGEE_EPSILON := APOGEE_EPSILONZ;

end 1if;
—Q%if abs (DELTA_APOGEE) < APOGEE_EPSILON then

\— PHEI_CMD_NS := PHEI_TRY:
i <+ I return;

Cwelsif COS_PHI_TRY(I) >= COS_PHI_MAX and DELTA_APOGEE > ZERO then

-- FULL LIFT DOWN REQUIRED --

| PHI_CMD_NS := ACOS(COS_PHI_MAX) * RAD_TO_DEG;
<4 — return;

[

elsif COS_PHI_TRY(I) <= COS_PHI_MIN and DELTA_APOGEE < ZERO then

PHI_CMD_NS := ACOS(COS_PHI_MIN) * RAD TO_DEG;
return;

— I := RUN_NUMBER + 1;

-- updating of a loop parameter is not allowed.
-- this should accomplish the same purpose as the
-- HAL/S code. I is tested in procedure CORRECTOR

*** GRASP/ADA V1.0 *** File: predguid.a.csd Page:

-- CORRECT ONLE MORE WITHOUT PREDICTION --

——J PUT(* OUT OF PREDICTIONS - PHI_CMD = ")

| PUT(PHI_TRY);
—— NEW_LINE;

—— PUT_LINE(

~—— NEW_LINE;

- PHI_CMD_NS := PHI_TRY;
<4 —— return;

>1elsif I > 1 and DELTA_PHI < DELTA_PHI_MIN and BRACKETED = TRUE
i then

| — PHI_CMD_NS := (PHI_TRY + PHI_TRY_LAST) / TWO;
<4 [—— return;

end if;

L | end loop;

end PC_SEQUENCER;

lend PC_SEQUENCER_PACKAGE;

__***'k***

__**_-

— .
package body LATERAL_CONTROL_PACKAGE 1is
(package

—- FUNCTION: LATERAL CONTROL LOGIC SUBPROGRAM --
-- CONTROLS OUT_OF_PLANE VELOCITY ERROR --

_ - LOCAL VARIABLES POSITIONED HERE FOR DUMPING AND SO THAT --
-- VARIABLES CAN RETAIN VALUES BETWEEN INVOCATIONS --
FIRST_PASS : BOOLEAN_32 := TRUE;
CORRIDOR : SCALAR_SINGLE;

*** GQRASP/ADA V1.0 *** File: predguid.a.csd Page: 14

SLOPE : SCALAR_SINGLE;

__'k***********************_-

procedure LATERAL_CONTROL is

__************************__

begin
if FIRST_PASS = TRUE then

SLOPE := (CORRIDOR_MAX - CORRIDOR_MIN) - (CORRIDOR_V_MAX -
CORRIDOR_V_MIN) ;
FIRST _PASS := FALSE;

| CORRIDOR := SCALAR_SINGLE (CORRIDOR_MIN * (V_NAV_MAG - CORRIDOR_V_MIN
) * SLOPE);

— CORRIDOR := MIDVAL (CORRIDOR_MIN, CORRIDOR, CORRIDOR_MAX) ;

if WEDGE_ANGLE_NAV > CORRIDOR then

SIGN_OF_BANK := SCALAR_SINGLE(-SIGN(DOT_PRODUCT (V_NAV,IHD)));

end if;
| PHI_CMD := PHI_CMD_NS * SIGN_OF_BANK;

lL— LIFT_DOWN_REVERSAL := TRUE;
lend LATERAL_CONTROL;
lend LATERAL_CONTROL_PACKAGE;

IR TZEIEREEEE SRR E S AR L o .

-- PRED GUID EXECUTIVE --

PR TEET R LR R EEE R R LR S A

procedure PRED_GUID is

+— SIGN_OF_BANK := SCALAR_SINGLE (SIGN (DOT_PRODUCT (V_NAV,IYD)));
| PHI_CMD_NS := abs (PHI_EI):
— PHI_CMD := SIGN_OF_BANK * PHI_CMD_NS;

| COS_PHI_MIN := COS(BANK_MAX * DEG_TO_RAD);
F—— COS_PHI_MAYX := COS(BANK_MIN * DEG_TO_RAD) ;

*** GRASP/ADA V1.0 *** File: predguid.a.csd Page:

lend INITIAL_GUID;

begin

if FIRST_TIME_CALLED then
CORRIDOR_MAX := 0.7;
FIRST_TIME_CALLED := FALSE;

end if;
-—C%if INITIALIZE_GUIDANCE = TRUE then

| -— GUIDANCE INITIALIZATION --

INITIAL_GUID;

L—— INITIALIZE_GUIDANCE := FALSE;

end if:

+— EARTH_POLE := (EF_TO_REF_AT_EPOCH(1,3),EF_TO_REF_AT_EPOCH(Z,B),
EF_TO_REF_AT_EPOCH(3,3));

+—— EARTH_OMEGA := SCALAR_DOUBLE(EARTH_RATE) * EARTH_POLE;

—%}-if G_LOAD > G_RUN_GUIDANCE then

end if;

—— PC_SEQUENCER;

I GUID_PASS := GUID_PASS =+ 1;
if GUID_PASS >= GUID_PASS_LIM then
GUID_PASS := 0;

end if;

end 1if:
Lend PRED_GUID;
lend PRED_GUID_PACKAGE;

